123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- import contextlib
- import os
- from typing import Mapping
- import safetensors
- import torch
- import k_diffusion
- from modules.models.sd3.other_impls import SDClipModel, SDXLClipG, T5XXLModel, SD3Tokenizer
- from modules.models.sd3.sd3_impls import BaseModel, SDVAE, SD3LatentFormat
- from modules import shared, modelloader, devices
- CLIPG_URL = "https://huggingface.co/stabilityai/stable-diffusion-3-medium/resolve/main/text_encoders/clip_g.safetensors"
- CLIPG_CONFIG = {
- "hidden_act": "gelu",
- "hidden_size": 1280,
- "intermediate_size": 5120,
- "num_attention_heads": 20,
- "num_hidden_layers": 32,
- }
- CLIPL_URL = "https://huggingface.co/stabilityai/stable-diffusion-3-medium/resolve/main/text_encoders/clip_l.safetensors"
- CLIPL_CONFIG = {
- "hidden_act": "quick_gelu",
- "hidden_size": 768,
- "intermediate_size": 3072,
- "num_attention_heads": 12,
- "num_hidden_layers": 12,
- }
- T5_URL = "https://huggingface.co/stabilityai/stable-diffusion-3-medium/resolve/main/text_encoders/t5xxl_fp16.safetensors"
- T5_CONFIG = {
- "d_ff": 10240,
- "d_model": 4096,
- "num_heads": 64,
- "num_layers": 24,
- "vocab_size": 32128,
- }
- class SafetensorsMapping(Mapping):
- def __init__(self, file):
- self.file = file
- def __len__(self):
- return len(self.file.keys())
- def __iter__(self):
- for key in self.file.keys():
- yield key
- def __getitem__(self, key):
- return self.file.get_tensor(key)
- class SD3Cond(torch.nn.Module):
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self.tokenizer = SD3Tokenizer()
- with torch.no_grad():
- self.clip_g = SDXLClipG(CLIPG_CONFIG, device="cpu", dtype=devices.dtype)
- self.clip_l = SDClipModel(layer="hidden", layer_idx=-2, device="cpu", dtype=devices.dtype, layer_norm_hidden_state=False, return_projected_pooled=False, textmodel_json_config=CLIPL_CONFIG)
- self.t5xxl = T5XXLModel(T5_CONFIG, device="cpu", dtype=devices.dtype)
- self.weights_loaded = False
- def forward(self, prompts: list[str]):
- res = []
- for prompt in prompts:
- tokens = self.tokenizer.tokenize_with_weights(prompt)
- l_out, l_pooled = self.clip_l.encode_token_weights(tokens["l"])
- g_out, g_pooled = self.clip_g.encode_token_weights(tokens["g"])
- t5_out, t5_pooled = self.t5xxl.encode_token_weights(tokens["t5xxl"])
- lg_out = torch.cat([l_out, g_out], dim=-1)
- lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1]))
- lgt_out = torch.cat([lg_out, t5_out], dim=-2)
- vector_out = torch.cat((l_pooled, g_pooled), dim=-1)
- res.append({
- 'crossattn': lgt_out[0].to(devices.device),
- 'vector': vector_out[0].to(devices.device),
- })
- return res
- def load_weights(self):
- if self.weights_loaded:
- return
- clip_path = os.path.join(shared.models_path, "CLIP")
- clip_g_file = modelloader.load_file_from_url(CLIPG_URL, model_dir=clip_path, file_name="clip_g.safetensors")
- with safetensors.safe_open(clip_g_file, framework="pt") as file:
- self.clip_g.transformer.load_state_dict(SafetensorsMapping(file))
- clip_l_file = modelloader.load_file_from_url(CLIPL_URL, model_dir=clip_path, file_name="clip_l.safetensors")
- with safetensors.safe_open(clip_l_file, framework="pt") as file:
- self.clip_l.transformer.load_state_dict(SafetensorsMapping(file), strict=False)
- t5_file = modelloader.load_file_from_url(T5_URL, model_dir=clip_path, file_name="t5xxl_fp16.safetensors")
- with safetensors.safe_open(t5_file, framework="pt") as file:
- self.t5xxl.transformer.load_state_dict(SafetensorsMapping(file), strict=False)
- self.weights_loaded = True
- def encode_embedding_init_text(self, init_text, nvpt):
- return torch.tensor([[0]], device=devices.device) # XXX
- class SD3Denoiser(k_diffusion.external.DiscreteSchedule):
- def __init__(self, inner_model, sigmas):
- super().__init__(sigmas, quantize=shared.opts.enable_quantization)
- self.inner_model = inner_model
- def forward(self, input, sigma, **kwargs):
- return self.inner_model.apply_model(input, sigma, **kwargs)
- class SD3Inferencer(torch.nn.Module):
- def __init__(self, state_dict, shift=3, use_ema=False):
- super().__init__()
- self.shift = shift
- with torch.no_grad():
- self.model = BaseModel(shift=shift, state_dict=state_dict, prefix="model.diffusion_model.", device="cpu", dtype=devices.dtype)
- self.first_stage_model = SDVAE(device="cpu", dtype=devices.dtype_vae)
- self.first_stage_model.dtype = self.model.diffusion_model.dtype
- self.alphas_cumprod = 1 / (self.model.model_sampling.sigmas ** 2 + 1)
- self.cond_stage_model = SD3Cond()
- self.cond_stage_key = 'txt'
- self.parameterization = "eps"
- self.model.conditioning_key = "crossattn"
- self.latent_format = SD3LatentFormat()
- self.latent_channels = 16
- def after_load_weights(self):
- self.cond_stage_model.load_weights()
- def ema_scope(self):
- return contextlib.nullcontext()
- def get_learned_conditioning(self, batch: list[str]):
- return self.cond_stage_model(batch)
- def apply_model(self, x, t, cond):
- return self.model.apply_model(x, t, c_crossattn=cond['crossattn'], y=cond['vector'])
- def decode_first_stage(self, latent):
- latent = self.latent_format.process_out(latent)
- return self.first_stage_model.decode(latent)
- def encode_first_stage(self, image):
- latent = self.first_stage_model.encode(image)
- return self.latent_format.process_in(latent)
- def create_denoiser(self):
- return SD3Denoiser(self, self.model.model_sampling.sigmas)
|