123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- import dataclasses
- import torch
- import k_diffusion
- import numpy as np
- from modules import shared
- def to_d(x, sigma, denoised):
- """Converts a denoiser output to a Karras ODE derivative."""
- return (x - denoised) / sigma
- k_diffusion.sampling.to_d = to_d
- @dataclasses.dataclass
- class Scheduler:
- name: str
- label: str
- function: any
- default_rho: float = -1
- need_inner_model: bool = False
- aliases: list = None
- def uniform(n, sigma_min, sigma_max, inner_model, device):
- return inner_model.get_sigmas(n).to(device)
- def sgm_uniform(n, sigma_min, sigma_max, inner_model, device):
- start = inner_model.sigma_to_t(torch.tensor(sigma_max))
- end = inner_model.sigma_to_t(torch.tensor(sigma_min))
- sigs = [
- inner_model.t_to_sigma(ts)
- for ts in torch.linspace(start, end, n + 1)[:-1]
- ]
- sigs += [0.0]
- return torch.FloatTensor(sigs).to(device)
- def get_align_your_steps_sigmas(n, sigma_min, sigma_max, device):
- # https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html
- def loglinear_interp(t_steps, num_steps):
- """
- Performs log-linear interpolation of a given array of decreasing numbers.
- """
- xs = np.linspace(0, 1, len(t_steps))
- ys = np.log(t_steps[::-1])
- new_xs = np.linspace(0, 1, num_steps)
- new_ys = np.interp(new_xs, xs, ys)
- interped_ys = np.exp(new_ys)[::-1].copy()
- return interped_ys
- if shared.sd_model.is_sdxl:
- sigmas = [14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.029]
- else:
- # Default to SD 1.5 sigmas.
- sigmas = [14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.029]
- if n != len(sigmas):
- sigmas = np.append(loglinear_interp(sigmas, n), [0.0])
- else:
- sigmas.append(0.0)
- return torch.FloatTensor(sigmas).to(device)
- def kl_optimal(n, sigma_min, sigma_max, device):
- alpha_min = torch.arctan(torch.tensor(sigma_min, device=device))
- alpha_max = torch.arctan(torch.tensor(sigma_max, device=device))
- step_indices = torch.arange(n + 1, device=device)
- sigmas = torch.tan(step_indices / n * alpha_min + (1.0 - step_indices / n) * alpha_max)
- return sigmas
- def normal_scheduler(n, sigma_min, sigma_max, inner_model, device, sgm=False, floor=False):
- start = inner_model.sigma_to_t(torch.tensor(sigma_max))
- end = inner_model.sigma_to_t(torch.tensor(sigma_min))
- if sgm:
- timesteps = torch.linspace(start, end, n + 1)[:-1]
- else:
- timesteps = torch.linspace(start, end, n)
- sigs = []
- for x in range(len(timesteps)):
- ts = timesteps[x]
- sigs.append(inner_model.t_to_sigma(ts))
- sigs += [0.0]
- return torch.FloatTensor(sigs).to(device)
- def ddim_scheduler(n, sigma_min, sigma_max, inner_model, device):
- sigs = []
- ss = max(len(inner_model.sigmas) // n, 1)
- x = 1
- while x < len(inner_model.sigmas):
- sigs += [float(inner_model.sigmas[x])]
- x += ss
- sigs = sigs[::-1]
- sigs += [0.0]
- return torch.FloatTensor(sigs).to(device)
- schedulers = [
- Scheduler('automatic', 'Automatic', None),
- Scheduler('uniform', 'Uniform', uniform, need_inner_model=True),
- Scheduler('karras', 'Karras', k_diffusion.sampling.get_sigmas_karras, default_rho=7.0),
- Scheduler('exponential', 'Exponential', k_diffusion.sampling.get_sigmas_exponential),
- Scheduler('polyexponential', 'Polyexponential', k_diffusion.sampling.get_sigmas_polyexponential, default_rho=1.0),
- Scheduler('sgm_uniform', 'SGM Uniform', sgm_uniform, need_inner_model=True, aliases=["SGMUniform"]),
- Scheduler('kl_optimal', 'KL Optimal', kl_optimal),
- Scheduler('align_your_steps', 'Align Your Steps', get_align_your_steps_sigmas),
- Scheduler('normal', 'Normal', normal_scheduler, need_inner_model=True),
- Scheduler('ddim', 'DDIM', ddim_scheduler, need_inner_model=True),
- ]
- schedulers_map = {**{x.name: x for x in schedulers}, **{x.label: x for x in schedulers}}
|