123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232 |
- import ldm.modules.encoders.modules
- import open_clip
- import torch
- import transformers.utils.hub
- from modules import shared
- class ReplaceHelper:
- def __init__(self):
- self.replaced = []
- def replace(self, obj, field, func):
- original = getattr(obj, field, None)
- if original is None:
- return None
- self.replaced.append((obj, field, original))
- setattr(obj, field, func)
- return original
- def restore(self):
- for obj, field, original in self.replaced:
- setattr(obj, field, original)
- self.replaced.clear()
- class DisableInitialization(ReplaceHelper):
- """
- When an object of this class enters a `with` block, it starts:
- - preventing torch's layer initialization functions from working
- - changes CLIP and OpenCLIP to not download model weights
- - changes CLIP to not make requests to check if there is a new version of a file you already have
- When it leaves the block, it reverts everything to how it was before.
- Use it like this:
- ```
- with DisableInitialization():
- do_things()
- ```
- """
- def __init__(self, disable_clip=True):
- super().__init__()
- self.disable_clip = disable_clip
- def replace(self, obj, field, func):
- original = getattr(obj, field, None)
- if original is None:
- return None
- self.replaced.append((obj, field, original))
- setattr(obj, field, func)
- return original
- def __enter__(self):
- def do_nothing(*args, **kwargs):
- pass
- def create_model_and_transforms_without_pretrained(*args, pretrained=None, **kwargs):
- return self.create_model_and_transforms(*args, pretrained=None, **kwargs)
- def CLIPTextModel_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs):
- res = self.CLIPTextModel_from_pretrained(None, *model_args, config=pretrained_model_name_or_path, state_dict={}, **kwargs)
- res.name_or_path = pretrained_model_name_or_path
- return res
- def transformers_modeling_utils_load_pretrained_model(*args, **kwargs):
- args = args[0:3] + ('/', ) + args[4:] # resolved_archive_file; must set it to something to prevent what seems to be a bug
- return self.transformers_modeling_utils_load_pretrained_model(*args, **kwargs)
- def transformers_utils_hub_get_file_from_cache(original, url, *args, **kwargs):
- # this file is always 404, prevent making request
- if url == f'{shared.hf_endpoint}/openai/clip-vit-large-patch14/resolve/main/added_tokens.json' or url == 'openai/clip-vit-large-patch14' and args[0] == 'added_tokens.json':
- return None
- try:
- res = original(url, *args, local_files_only=True, **kwargs)
- if res is None:
- res = original(url, *args, local_files_only=False, **kwargs)
- return res
- except Exception:
- return original(url, *args, local_files_only=False, **kwargs)
- def transformers_utils_hub_get_from_cache(url, *args, local_files_only=False, **kwargs):
- return transformers_utils_hub_get_file_from_cache(self.transformers_utils_hub_get_from_cache, url, *args, **kwargs)
- def transformers_tokenization_utils_base_cached_file(url, *args, local_files_only=False, **kwargs):
- return transformers_utils_hub_get_file_from_cache(self.transformers_tokenization_utils_base_cached_file, url, *args, **kwargs)
- def transformers_configuration_utils_cached_file(url, *args, local_files_only=False, **kwargs):
- return transformers_utils_hub_get_file_from_cache(self.transformers_configuration_utils_cached_file, url, *args, **kwargs)
- self.replace(torch.nn.init, 'kaiming_uniform_', do_nothing)
- self.replace(torch.nn.init, '_no_grad_normal_', do_nothing)
- self.replace(torch.nn.init, '_no_grad_uniform_', do_nothing)
- if self.disable_clip:
- self.create_model_and_transforms = self.replace(open_clip, 'create_model_and_transforms', create_model_and_transforms_without_pretrained)
- self.CLIPTextModel_from_pretrained = self.replace(ldm.modules.encoders.modules.CLIPTextModel, 'from_pretrained', CLIPTextModel_from_pretrained)
- self.transformers_modeling_utils_load_pretrained_model = self.replace(transformers.modeling_utils.PreTrainedModel, '_load_pretrained_model', transformers_modeling_utils_load_pretrained_model)
- self.transformers_tokenization_utils_base_cached_file = self.replace(transformers.tokenization_utils_base, 'cached_file', transformers_tokenization_utils_base_cached_file)
- self.transformers_configuration_utils_cached_file = self.replace(transformers.configuration_utils, 'cached_file', transformers_configuration_utils_cached_file)
- self.transformers_utils_hub_get_from_cache = self.replace(transformers.utils.hub, 'get_from_cache', transformers_utils_hub_get_from_cache)
- def __exit__(self, exc_type, exc_val, exc_tb):
- self.restore()
- class InitializeOnMeta(ReplaceHelper):
- """
- Context manager that causes all parameters for linear/conv2d/mha layers to be allocated on meta device,
- which results in those parameters having no values and taking no memory. model.to() will be broken and
- will need to be repaired by using LoadStateDictOnMeta below when loading params from state dict.
- Usage:
- ```
- with sd_disable_initialization.InitializeOnMeta():
- sd_model = instantiate_from_config(sd_config.model)
- ```
- """
- def __enter__(self):
- if shared.cmd_opts.disable_model_loading_ram_optimization:
- return
- def set_device(x):
- x["device"] = "meta"
- return x
- linear_init = self.replace(torch.nn.Linear, '__init__', lambda *args, **kwargs: linear_init(*args, **set_device(kwargs)))
- conv2d_init = self.replace(torch.nn.Conv2d, '__init__', lambda *args, **kwargs: conv2d_init(*args, **set_device(kwargs)))
- mha_init = self.replace(torch.nn.MultiheadAttention, '__init__', lambda *args, **kwargs: mha_init(*args, **set_device(kwargs)))
- self.replace(torch.nn.Module, 'to', lambda *args, **kwargs: None)
- def __exit__(self, exc_type, exc_val, exc_tb):
- self.restore()
- class LoadStateDictOnMeta(ReplaceHelper):
- """
- Context manager that allows to read parameters from state_dict into a model that has some of its parameters in the meta device.
- As those parameters are read from state_dict, they will be deleted from it, so by the end state_dict will be mostly empty, to save memory.
- Meant to be used together with InitializeOnMeta above.
- Usage:
- ```
- with sd_disable_initialization.LoadStateDictOnMeta(state_dict):
- model.load_state_dict(state_dict, strict=False)
- ```
- """
- def __init__(self, state_dict, device, weight_dtype_conversion=None):
- super().__init__()
- self.state_dict = state_dict
- self.device = device
- self.weight_dtype_conversion = weight_dtype_conversion or {}
- self.default_dtype = self.weight_dtype_conversion.get('')
- def get_weight_dtype(self, key):
- key_first_term, _ = key.split('.', 1)
- return self.weight_dtype_conversion.get(key_first_term, self.default_dtype)
- def __enter__(self):
- if shared.cmd_opts.disable_model_loading_ram_optimization:
- return
- sd = self.state_dict
- device = self.device
- def load_from_state_dict(original, module, state_dict, prefix, *args, **kwargs):
- used_param_keys = []
- for name, param in module._parameters.items():
- if param is None:
- continue
- key = prefix + name
- sd_param = sd.pop(key, None)
- if sd_param is not None:
- state_dict[key] = sd_param.to(dtype=self.get_weight_dtype(key))
- used_param_keys.append(key)
- if param.is_meta:
- dtype = sd_param.dtype if sd_param is not None else param.dtype
- module._parameters[name] = torch.nn.parameter.Parameter(torch.zeros_like(param, device=device, dtype=dtype), requires_grad=param.requires_grad)
- for name in module._buffers:
- key = prefix + name
- sd_param = sd.pop(key, None)
- if sd_param is not None:
- state_dict[key] = sd_param
- used_param_keys.append(key)
- original(module, state_dict, prefix, *args, **kwargs)
- for key in used_param_keys:
- state_dict.pop(key, None)
- def load_state_dict(original, module, state_dict, strict=True):
- """torch makes a lot of copies of the dictionary with weights, so just deleting entries from state_dict does not help
- because the same values are stored in multiple copies of the dict. The trick used here is to give torch a dict with
- all weights on meta device, i.e. deleted, and then it doesn't matter how many copies torch makes.
- In _load_from_state_dict, the correct weight will be obtained from a single dict with the right weights (sd).
- The dangerous thing about this is if _load_from_state_dict is not called, (if some exotic module overloads
- the function and does not call the original) the state dict will just fail to load because weights
- would be on the meta device.
- """
- if state_dict is sd:
- state_dict = {k: v.to(device="meta", dtype=v.dtype) for k, v in state_dict.items()}
- original(module, state_dict, strict=strict)
- module_load_state_dict = self.replace(torch.nn.Module, 'load_state_dict', lambda *args, **kwargs: load_state_dict(module_load_state_dict, *args, **kwargs))
- module_load_from_state_dict = self.replace(torch.nn.Module, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(module_load_from_state_dict, *args, **kwargs))
- linear_load_from_state_dict = self.replace(torch.nn.Linear, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(linear_load_from_state_dict, *args, **kwargs))
- conv2d_load_from_state_dict = self.replace(torch.nn.Conv2d, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(conv2d_load_from_state_dict, *args, **kwargs))
- mha_load_from_state_dict = self.replace(torch.nn.MultiheadAttention, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(mha_load_from_state_dict, *args, **kwargs))
- layer_norm_load_from_state_dict = self.replace(torch.nn.LayerNorm, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(layer_norm_load_from_state_dict, *args, **kwargs))
- group_norm_load_from_state_dict = self.replace(torch.nn.GroupNorm, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(group_norm_load_from_state_dict, *args, **kwargs))
- def __exit__(self, exc_type, exc_val, exc_tb):
- self.restore()
|