123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- import os
- from modules import modelloader, errors
- from modules.shared import cmd_opts, opts, hf_endpoint
- from modules.upscaler import Upscaler, UpscalerData
- from modules.upscaler_utils import upscale_with_model
- class UpscalerDAT(Upscaler):
- def __init__(self, user_path):
- self.name = "DAT"
- self.user_path = user_path
- self.scalers = []
- super().__init__()
- for file in self.find_models(ext_filter=[".pt", ".pth"]):
- name = modelloader.friendly_name(file)
- scaler_data = UpscalerData(name, file, upscaler=self, scale=None)
- self.scalers.append(scaler_data)
- for model in get_dat_models(self):
- if model.name in opts.dat_enabled_models:
- self.scalers.append(model)
- def do_upscale(self, img, path):
- try:
- info = self.load_model(path)
- except Exception:
- errors.report(f"Unable to load DAT model {path}", exc_info=True)
- return img
- model_descriptor = modelloader.load_spandrel_model(
- info.local_data_path,
- device=self.device,
- prefer_half=(not cmd_opts.no_half and not cmd_opts.upcast_sampling),
- expected_architecture="DAT",
- )
- return upscale_with_model(
- model_descriptor,
- img,
- tile_size=opts.DAT_tile,
- tile_overlap=opts.DAT_tile_overlap,
- )
- def load_model(self, path):
- for scaler in self.scalers:
- if scaler.data_path == path:
- if scaler.local_data_path.startswith("http"):
- scaler.local_data_path = modelloader.load_file_from_url(
- scaler.data_path,
- model_dir=self.model_download_path,
- hash_prefix=scaler.sha256,
- )
- if os.path.getsize(scaler.local_data_path) < 200:
- # Re-download if the file is too small, probably an LFS pointer
- scaler.local_data_path = modelloader.load_file_from_url(
- scaler.data_path,
- model_dir=self.model_download_path,
- hash_prefix=scaler.sha256,
- re_download=True,
- )
- if not os.path.exists(scaler.local_data_path):
- raise FileNotFoundError(f"DAT data missing: {scaler.local_data_path}")
- return scaler
- raise ValueError(f"Unable to find model info: {path}")
- def get_dat_models(scaler):
- return [
- UpscalerData(
- name="DAT x2",
- path=f"{hf_endpoint}/w-e-w/DAT/resolve/main/experiments/pretrained_models/DAT/DAT_x2.pth",
- scale=2,
- upscaler=scaler,
- sha256='7760aa96e4ee77e29d4f89c3a4486200042e019461fdb8aa286f49aa00b89b51',
- ),
- UpscalerData(
- name="DAT x3",
- path=f"{hf_endpoint}/w-e-w/DAT/resolve/main/experiments/pretrained_models/DAT/DAT_x3.pth",
- scale=3,
- upscaler=scaler,
- sha256='581973e02c06f90d4eb90acf743ec9604f56f3c2c6f9e1e2c2b38ded1f80d197',
- ),
- UpscalerData(
- name="DAT x4",
- path=f"{hf_endpoint}/w-e-w/DAT/resolve/main/experiments/pretrained_models/DAT/DAT_x4.pth",
- scale=4,
- upscaler=scaler,
- sha256='391a6ce69899dff5ea3214557e9d585608254579217169faf3d4c353caff049e',
- ),
- ]
|