123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371 |
- ### Impls of the SD3 core diffusion model and VAE
- import torch, math, einops
- from mmdit import MMDiT
- from PIL import Image
- #################################################################################################
- ### MMDiT Model Wrapping
- #################################################################################################
- class ModelSamplingDiscreteFlow(torch.nn.Module):
- """Helper for sampler scheduling (ie timestep/sigma calculations) for Discrete Flow models"""
- def __init__(self, shift=1.0):
- super().__init__()
- self.shift = shift
- timesteps = 1000
- ts = self.sigma(torch.arange(1, timesteps + 1, 1))
- self.register_buffer('sigmas', ts)
- @property
- def sigma_min(self):
- return self.sigmas[0]
- @property
- def sigma_max(self):
- return self.sigmas[-1]
- def timestep(self, sigma):
- return sigma * 1000
- def sigma(self, timestep: torch.Tensor):
- timestep = timestep / 1000.0
- if self.shift == 1.0:
- return timestep
- return self.shift * timestep / (1 + (self.shift - 1) * timestep)
- def calculate_denoised(self, sigma, model_output, model_input):
- sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
- return model_input - model_output * sigma
- def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
- return sigma * noise + (1.0 - sigma) * latent_image
- class BaseModel(torch.nn.Module):
- """Wrapper around the core MM-DiT model"""
- def __init__(self, shift=1.0, device=None, dtype=torch.float32, file=None, prefix=""):
- super().__init__()
- # Important configuration values can be quickly determined by checking shapes in the source file
- # Some of these will vary between models (eg 2B vs 8B primarily differ in their depth, but also other details change)
- patch_size = file.get_tensor(f"{prefix}x_embedder.proj.weight").shape[2]
- depth = file.get_tensor(f"{prefix}x_embedder.proj.weight").shape[0] // 64
- num_patches = file.get_tensor(f"{prefix}pos_embed").shape[1]
- pos_embed_max_size = round(math.sqrt(num_patches))
- adm_in_channels = file.get_tensor(f"{prefix}y_embedder.mlp.0.weight").shape[1]
- context_shape = file.get_tensor(f"{prefix}context_embedder.weight").shape
- context_embedder_config = {
- "target": "torch.nn.Linear",
- "params": {
- "in_features": context_shape[1],
- "out_features": context_shape[0]
- }
- }
- self.diffusion_model = MMDiT(input_size=None, pos_embed_scaling_factor=None, pos_embed_offset=None, pos_embed_max_size=pos_embed_max_size, patch_size=patch_size, in_channels=16, depth=depth, num_patches=num_patches, adm_in_channels=adm_in_channels, context_embedder_config=context_embedder_config, device=device, dtype=dtype)
- self.model_sampling = ModelSamplingDiscreteFlow(shift=shift)
- def apply_model(self, x, sigma, c_crossattn=None, y=None):
- dtype = self.get_dtype()
- timestep = self.model_sampling.timestep(sigma).float()
- model_output = self.diffusion_model(x.to(dtype), timestep, context=c_crossattn.to(dtype), y=y.to(dtype)).float()
- return self.model_sampling.calculate_denoised(sigma, model_output, x)
- def forward(self, *args, **kwargs):
- return self.apply_model(*args, **kwargs)
- def get_dtype(self):
- return self.diffusion_model.dtype
- class CFGDenoiser(torch.nn.Module):
- """Helper for applying CFG Scaling to diffusion outputs"""
- def __init__(self, model):
- super().__init__()
- self.model = model
- def forward(self, x, timestep, cond, uncond, cond_scale):
- # Run cond and uncond in a batch together
- batched = self.model.apply_model(torch.cat([x, x]), torch.cat([timestep, timestep]), c_crossattn=torch.cat([cond["c_crossattn"], uncond["c_crossattn"]]), y=torch.cat([cond["y"], uncond["y"]]))
- # Then split and apply CFG Scaling
- pos_out, neg_out = batched.chunk(2)
- scaled = neg_out + (pos_out - neg_out) * cond_scale
- return scaled
- class SD3LatentFormat:
- """Latents are slightly shifted from center - this class must be called after VAE Decode to correct for the shift"""
- def __init__(self):
- self.scale_factor = 1.5305
- self.shift_factor = 0.0609
- def process_in(self, latent):
- return (latent - self.shift_factor) * self.scale_factor
- def process_out(self, latent):
- return (latent / self.scale_factor) + self.shift_factor
- def decode_latent_to_preview(self, x0):
- """Quick RGB approximate preview of sd3 latents"""
- factors = torch.tensor([
- [-0.0645, 0.0177, 0.1052], [ 0.0028, 0.0312, 0.0650],
- [ 0.1848, 0.0762, 0.0360], [ 0.0944, 0.0360, 0.0889],
- [ 0.0897, 0.0506, -0.0364], [-0.0020, 0.1203, 0.0284],
- [ 0.0855, 0.0118, 0.0283], [-0.0539, 0.0658, 0.1047],
- [-0.0057, 0.0116, 0.0700], [-0.0412, 0.0281, -0.0039],
- [ 0.1106, 0.1171, 0.1220], [-0.0248, 0.0682, -0.0481],
- [ 0.0815, 0.0846, 0.1207], [-0.0120, -0.0055, -0.0867],
- [-0.0749, -0.0634, -0.0456], [-0.1418, -0.1457, -0.1259]
- ], device="cpu")
- latent_image = x0[0].permute(1, 2, 0).cpu() @ factors
- latents_ubyte = (((latent_image + 1) / 2)
- .clamp(0, 1) # change scale from -1..1 to 0..1
- .mul(0xFF) # to 0..255
- .byte()).cpu()
- return Image.fromarray(latents_ubyte.numpy())
- #################################################################################################
- ### K-Diffusion Sampling
- #################################################################################################
- def append_dims(x, target_dims):
- """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
- dims_to_append = target_dims - x.ndim
- return x[(...,) + (None,) * dims_to_append]
- def to_d(x, sigma, denoised):
- """Converts a denoiser output to a Karras ODE derivative."""
- return (x - denoised) / append_dims(sigma, x.ndim)
- @torch.no_grad()
- @torch.autocast("cuda", dtype=torch.float16)
- def sample_euler(model, x, sigmas, extra_args=None):
- """Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
- extra_args = {} if extra_args is None else extra_args
- s_in = x.new_ones([x.shape[0]])
- for i in range(len(sigmas) - 1):
- sigma_hat = sigmas[i]
- denoised = model(x, sigma_hat * s_in, **extra_args)
- d = to_d(x, sigma_hat, denoised)
- dt = sigmas[i + 1] - sigma_hat
- # Euler method
- x = x + d * dt
- return x
- #################################################################################################
- ### VAE
- #################################################################################################
- def Normalize(in_channels, num_groups=32, dtype=torch.float32, device=None):
- return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
- class ResnetBlock(torch.nn.Module):
- def __init__(self, *, in_channels, out_channels=None, dtype=torch.float32, device=None):
- super().__init__()
- self.in_channels = in_channels
- out_channels = in_channels if out_channels is None else out_channels
- self.out_channels = out_channels
- self.norm1 = Normalize(in_channels, dtype=dtype, device=device)
- self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, dtype=dtype, device=device)
- self.norm2 = Normalize(out_channels, dtype=dtype, device=device)
- self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, dtype=dtype, device=device)
- if self.in_channels != self.out_channels:
- self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, dtype=dtype, device=device)
- else:
- self.nin_shortcut = None
- self.swish = torch.nn.SiLU(inplace=True)
- def forward(self, x):
- hidden = x
- hidden = self.norm1(hidden)
- hidden = self.swish(hidden)
- hidden = self.conv1(hidden)
- hidden = self.norm2(hidden)
- hidden = self.swish(hidden)
- hidden = self.conv2(hidden)
- if self.in_channels != self.out_channels:
- x = self.nin_shortcut(x)
- return x + hidden
- class AttnBlock(torch.nn.Module):
- def __init__(self, in_channels, dtype=torch.float32, device=None):
- super().__init__()
- self.norm = Normalize(in_channels, dtype=dtype, device=device)
- self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0, dtype=dtype, device=device)
- self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0, dtype=dtype, device=device)
- self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0, dtype=dtype, device=device)
- self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0, dtype=dtype, device=device)
- def forward(self, x):
- hidden = self.norm(x)
- q = self.q(hidden)
- k = self.k(hidden)
- v = self.v(hidden)
- b, c, h, w = q.shape
- q, k, v = map(lambda x: einops.rearrange(x, "b c h w -> b 1 (h w) c").contiguous(), (q, k, v))
- hidden = torch.nn.functional.scaled_dot_product_attention(q, k, v) # scale is dim ** -0.5 per default
- hidden = einops.rearrange(hidden, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
- hidden = self.proj_out(hidden)
- return x + hidden
- class Downsample(torch.nn.Module):
- def __init__(self, in_channels, dtype=torch.float32, device=None):
- super().__init__()
- self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0, dtype=dtype, device=device)
- def forward(self, x):
- pad = (0,1,0,1)
- x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
- x = self.conv(x)
- return x
- class Upsample(torch.nn.Module):
- def __init__(self, in_channels, dtype=torch.float32, device=None):
- super().__init__()
- self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dtype=dtype, device=device)
- def forward(self, x):
- x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
- x = self.conv(x)
- return x
- class VAEEncoder(torch.nn.Module):
- def __init__(self, ch=128, ch_mult=(1,2,4,4), num_res_blocks=2, in_channels=3, z_channels=16, dtype=torch.float32, device=None):
- super().__init__()
- self.num_resolutions = len(ch_mult)
- self.num_res_blocks = num_res_blocks
- # downsampling
- self.conv_in = torch.nn.Conv2d(in_channels, ch, kernel_size=3, stride=1, padding=1, dtype=dtype, device=device)
- in_ch_mult = (1,) + tuple(ch_mult)
- self.in_ch_mult = in_ch_mult
- self.down = torch.nn.ModuleList()
- for i_level in range(self.num_resolutions):
- block = torch.nn.ModuleList()
- attn = torch.nn.ModuleList()
- block_in = ch*in_ch_mult[i_level]
- block_out = ch*ch_mult[i_level]
- for i_block in range(num_res_blocks):
- block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, dtype=dtype, device=device))
- block_in = block_out
- down = torch.nn.Module()
- down.block = block
- down.attn = attn
- if i_level != self.num_resolutions - 1:
- down.downsample = Downsample(block_in, dtype=dtype, device=device)
- self.down.append(down)
- # middle
- self.mid = torch.nn.Module()
- self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
- self.mid.attn_1 = AttnBlock(block_in, dtype=dtype, device=device)
- self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
- # end
- self.norm_out = Normalize(block_in, dtype=dtype, device=device)
- self.conv_out = torch.nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1, dtype=dtype, device=device)
- self.swish = torch.nn.SiLU(inplace=True)
- def forward(self, x):
- # downsampling
- hs = [self.conv_in(x)]
- for i_level in range(self.num_resolutions):
- for i_block in range(self.num_res_blocks):
- h = self.down[i_level].block[i_block](hs[-1])
- hs.append(h)
- if i_level != self.num_resolutions-1:
- hs.append(self.down[i_level].downsample(hs[-1]))
- # middle
- h = hs[-1]
- h = self.mid.block_1(h)
- h = self.mid.attn_1(h)
- h = self.mid.block_2(h)
- # end
- h = self.norm_out(h)
- h = self.swish(h)
- h = self.conv_out(h)
- return h
- class VAEDecoder(torch.nn.Module):
- def __init__(self, ch=128, out_ch=3, ch_mult=(1, 2, 4, 4), num_res_blocks=2, resolution=256, z_channels=16, dtype=torch.float32, device=None):
- super().__init__()
- self.num_resolutions = len(ch_mult)
- self.num_res_blocks = num_res_blocks
- block_in = ch * ch_mult[self.num_resolutions - 1]
- curr_res = resolution // 2 ** (self.num_resolutions - 1)
- # z to block_in
- self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1, dtype=dtype, device=device)
- # middle
- self.mid = torch.nn.Module()
- self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
- self.mid.attn_1 = AttnBlock(block_in, dtype=dtype, device=device)
- self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
- # upsampling
- self.up = torch.nn.ModuleList()
- for i_level in reversed(range(self.num_resolutions)):
- block = torch.nn.ModuleList()
- block_out = ch * ch_mult[i_level]
- for i_block in range(self.num_res_blocks + 1):
- block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, dtype=dtype, device=device))
- block_in = block_out
- up = torch.nn.Module()
- up.block = block
- if i_level != 0:
- up.upsample = Upsample(block_in, dtype=dtype, device=device)
- curr_res = curr_res * 2
- self.up.insert(0, up) # prepend to get consistent order
- # end
- self.norm_out = Normalize(block_in, dtype=dtype, device=device)
- self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1, dtype=dtype, device=device)
- self.swish = torch.nn.SiLU(inplace=True)
- def forward(self, z):
- # z to block_in
- hidden = self.conv_in(z)
- # middle
- hidden = self.mid.block_1(hidden)
- hidden = self.mid.attn_1(hidden)
- hidden = self.mid.block_2(hidden)
- # upsampling
- for i_level in reversed(range(self.num_resolutions)):
- for i_block in range(self.num_res_blocks + 1):
- hidden = self.up[i_level].block[i_block](hidden)
- if i_level != 0:
- hidden = self.up[i_level].upsample(hidden)
- # end
- hidden = self.norm_out(hidden)
- hidden = self.swish(hidden)
- hidden = self.conv_out(hidden)
- return hidden
- class SDVAE(torch.nn.Module):
- def __init__(self, dtype=torch.float32, device=None):
- super().__init__()
- self.encoder = VAEEncoder(dtype=dtype, device=device)
- self.decoder = VAEDecoder(dtype=dtype, device=device)
- @torch.autocast("cuda", dtype=torch.float16)
- def decode(self, latent):
- return self.decoder(latent)
- @torch.autocast("cuda", dtype=torch.float16)
- def encode(self, image):
- hidden = self.encoder(image)
- mean, logvar = torch.chunk(hidden, 2, dim=1)
- logvar = torch.clamp(logvar, -30.0, 20.0)
- std = torch.exp(0.5 * logvar)
- return mean + std * torch.randn_like(mean)
|