123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355 |
- import inspect
- from collections import namedtuple
- import numpy as np
- import torch
- from PIL import Image
- from modules import devices, images, sd_vae_approx, sd_samplers, sd_vae_taesd, shared, sd_models
- from modules.shared import opts, state
- import k_diffusion.sampling
- SamplerDataTuple = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
- class SamplerData(SamplerDataTuple):
- def total_steps(self, steps):
- if self.options.get("second_order", False):
- steps = steps * 2
- return steps
- def setup_img2img_steps(p, steps=None):
- if opts.img2img_fix_steps or steps is not None:
- requested_steps = (steps or p.steps)
- steps = int(requested_steps / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
- t_enc = requested_steps - 1
- else:
- steps = p.steps
- t_enc = int(min(p.denoising_strength, 0.999) * steps)
- return steps, t_enc
- approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2, "TAESD": 3}
- def samples_to_images_tensor(sample, approximation=None, model=None):
- """Transforms 4-channel latent space images into 3-channel RGB image tensors, with values in range [-1, 1]."""
- if approximation is None or (shared.state.interrupted and opts.live_preview_fast_interrupt):
- approximation = approximation_indexes.get(opts.show_progress_type, 0)
- from modules import lowvram
- if approximation == 0 and lowvram.is_enabled(shared.sd_model) and not shared.opts.live_preview_allow_lowvram_full:
- approximation = 1
- if approximation == 2:
- x_sample = sd_vae_approx.cheap_approximation(sample)
- elif approximation == 1:
- x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype)).detach()
- elif approximation == 3:
- x_sample = sd_vae_taesd.decoder_model()(sample.to(devices.device, devices.dtype)).detach()
- x_sample = x_sample * 2 - 1
- else:
- if model is None:
- model = shared.sd_model
- with torch.no_grad(), devices.without_autocast(): # fixes an issue with unstable VAEs that are flaky even in fp32
- x_sample = model.decode_first_stage(sample.to(model.first_stage_model.dtype))
- return x_sample
- def single_sample_to_image(sample, approximation=None):
- x_sample = samples_to_images_tensor(sample.unsqueeze(0), approximation)[0] * 0.5 + 0.5
- x_sample = torch.clamp(x_sample, min=0.0, max=1.0)
- x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
- x_sample = x_sample.astype(np.uint8)
- return Image.fromarray(x_sample)
- def decode_first_stage(model, x):
- x = x.to(devices.dtype_vae)
- approx_index = approximation_indexes.get(opts.sd_vae_decode_method, 0)
- return samples_to_images_tensor(x, approx_index, model)
- def sample_to_image(samples, index=0, approximation=None):
- return single_sample_to_image(samples[index], approximation)
- def samples_to_image_grid(samples, approximation=None):
- return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples])
- def images_tensor_to_samples(image, approximation=None, model=None):
- '''image[0, 1] -> latent'''
- if approximation is None:
- approximation = approximation_indexes.get(opts.sd_vae_encode_method, 0)
- if approximation == 3:
- image = image.to(devices.device, devices.dtype)
- x_latent = sd_vae_taesd.encoder_model()(image)
- else:
- if model is None:
- model = shared.sd_model
- model.first_stage_model.to(devices.dtype_vae)
- image = image.to(shared.device, dtype=devices.dtype_vae)
- image = image * 2 - 1
- if len(image) > 1:
- x_latent = torch.stack([
- model.get_first_stage_encoding(
- model.encode_first_stage(torch.unsqueeze(img, 0))
- )[0]
- for img in image
- ])
- else:
- x_latent = model.get_first_stage_encoding(model.encode_first_stage(image))
- return x_latent
- def store_latent(decoded):
- state.current_latent = decoded
- if opts.live_previews_enable and opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0:
- if not shared.parallel_processing_allowed:
- shared.state.assign_current_image(sample_to_image(decoded))
- def is_sampler_using_eta_noise_seed_delta(p):
- """returns whether sampler from config will use eta noise seed delta for image creation"""
- sampler_config = sd_samplers.find_sampler_config(p.sampler_name)
- eta = p.eta
- if eta is None and p.sampler is not None:
- eta = p.sampler.eta
- if eta is None and sampler_config is not None:
- eta = 0 if sampler_config.options.get("default_eta_is_0", False) else 1.0
- if eta == 0:
- return False
- return sampler_config.options.get("uses_ensd", False)
- class InterruptedException(BaseException):
- pass
- def replace_torchsde_browinan():
- import torchsde._brownian.brownian_interval
- def torchsde_randn(size, dtype, device, seed):
- return devices.randn_local(seed, size).to(device=device, dtype=dtype)
- torchsde._brownian.brownian_interval._randn = torchsde_randn
- replace_torchsde_browinan()
- def apply_refiner(cfg_denoiser, sigma=None):
- if opts.refiner_switch_by_sample_steps or sigma is None:
- completed_ratio = cfg_denoiser.step / cfg_denoiser.total_steps
- cfg_denoiser.p.extra_generation_params["Refiner switch by sampling steps"] = True
- else:
- # torch.max(sigma) only to handle rare case where we might have different sigmas in the same batch
- try:
- timestep = torch.argmin(torch.abs(cfg_denoiser.inner_model.sigmas.to(sigma.device) - torch.max(sigma)))
- except AttributeError: # for samplers that don't use sigmas (DDIM) sigma is actually the timestep
- timestep = torch.max(sigma).to(dtype=int)
- completed_ratio = (999 - timestep) / 1000
- refiner_switch_at = cfg_denoiser.p.refiner_switch_at
- refiner_checkpoint_info = cfg_denoiser.p.refiner_checkpoint_info
- if refiner_switch_at is not None and completed_ratio < refiner_switch_at:
- return False
- if refiner_checkpoint_info is None or shared.sd_model.sd_checkpoint_info == refiner_checkpoint_info:
- return False
- if getattr(cfg_denoiser.p, "enable_hr", False):
- is_second_pass = cfg_denoiser.p.is_hr_pass
- if opts.hires_fix_refiner_pass == "first pass" and is_second_pass:
- return False
- if opts.hires_fix_refiner_pass == "second pass" and not is_second_pass:
- return False
- if opts.hires_fix_refiner_pass != "second pass":
- cfg_denoiser.p.extra_generation_params['Hires refiner'] = opts.hires_fix_refiner_pass
- cfg_denoiser.p.extra_generation_params['Refiner'] = refiner_checkpoint_info.short_title
- cfg_denoiser.p.extra_generation_params['Refiner switch at'] = refiner_switch_at
- with sd_models.SkipWritingToConfig():
- sd_models.reload_model_weights(info=refiner_checkpoint_info)
- devices.torch_gc()
- cfg_denoiser.p.setup_conds()
- cfg_denoiser.update_inner_model()
- return True
- class TorchHijack:
- """This is here to replace torch.randn_like of k-diffusion.
- k-diffusion has random_sampler argument for most samplers, but not for all, so
- this is needed to properly replace every use of torch.randn_like.
- We need to replace to make images generated in batches to be same as images generated individually."""
- def __init__(self, p):
- self.rng = p.rng
- def __getattr__(self, item):
- if item == 'randn_like':
- return self.randn_like
- if hasattr(torch, item):
- return getattr(torch, item)
- raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
- def randn_like(self, x):
- return self.rng.next()
- class Sampler:
- def __init__(self, funcname):
- self.funcname = funcname
- self.func = funcname
- self.extra_params = []
- self.sampler_noises = None
- self.stop_at = None
- self.eta = None
- self.config: SamplerData = None # set by the function calling the constructor
- self.last_latent = None
- self.s_min_uncond = None
- self.s_churn = 0.0
- self.s_tmin = 0.0
- self.s_tmax = float('inf')
- self.s_noise = 1.0
- self.eta_option_field = 'eta_ancestral'
- self.eta_infotext_field = 'Eta'
- self.eta_default = 1.0
- self.conditioning_key = getattr(shared.sd_model.model, 'conditioning_key', 'crossattn')
- self.p = None
- self.model_wrap_cfg = None
- self.sampler_extra_args = None
- self.options = {}
- def callback_state(self, d):
- step = d['i']
- if self.stop_at is not None and step > self.stop_at:
- raise InterruptedException
- state.sampling_step = step
- shared.total_tqdm.update()
- def launch_sampling(self, steps, func):
- self.model_wrap_cfg.steps = steps
- self.model_wrap_cfg.total_steps = self.config.total_steps(steps)
- state.sampling_steps = steps
- state.sampling_step = 0
- try:
- return func()
- except RecursionError:
- print(
- 'Encountered RecursionError during sampling, returning last latent. '
- 'rho >5 with a polyexponential scheduler may cause this error. '
- 'You should try to use a smaller rho value instead.'
- )
- return self.last_latent
- except InterruptedException:
- return self.last_latent
- def number_of_needed_noises(self, p):
- return p.steps
- def initialize(self, p) -> dict:
- self.p = p
- self.model_wrap_cfg.p = p
- self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
- self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
- self.model_wrap_cfg.step = 0
- self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
- self.eta = p.eta if p.eta is not None else getattr(opts, self.eta_option_field, 0.0)
- self.s_min_uncond = getattr(p, 's_min_uncond', 0.0)
- k_diffusion.sampling.torch = TorchHijack(p)
- extra_params_kwargs = {}
- for param_name in self.extra_params:
- if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
- extra_params_kwargs[param_name] = getattr(p, param_name)
- if 'eta' in inspect.signature(self.func).parameters:
- if self.eta != self.eta_default:
- p.extra_generation_params[self.eta_infotext_field] = self.eta
- extra_params_kwargs['eta'] = self.eta
- if len(self.extra_params) > 0:
- s_churn = getattr(opts, 's_churn', p.s_churn)
- s_tmin = getattr(opts, 's_tmin', p.s_tmin)
- s_tmax = getattr(opts, 's_tmax', p.s_tmax) or self.s_tmax # 0 = inf
- s_noise = getattr(opts, 's_noise', p.s_noise)
- if 's_churn' in extra_params_kwargs and s_churn != self.s_churn:
- extra_params_kwargs['s_churn'] = s_churn
- p.s_churn = s_churn
- p.extra_generation_params['Sigma churn'] = s_churn
- if 's_tmin' in extra_params_kwargs and s_tmin != self.s_tmin:
- extra_params_kwargs['s_tmin'] = s_tmin
- p.s_tmin = s_tmin
- p.extra_generation_params['Sigma tmin'] = s_tmin
- if 's_tmax' in extra_params_kwargs and s_tmax != self.s_tmax:
- extra_params_kwargs['s_tmax'] = s_tmax
- p.s_tmax = s_tmax
- p.extra_generation_params['Sigma tmax'] = s_tmax
- if 's_noise' in extra_params_kwargs and s_noise != self.s_noise:
- extra_params_kwargs['s_noise'] = s_noise
- p.s_noise = s_noise
- p.extra_generation_params['Sigma noise'] = s_noise
- return extra_params_kwargs
- def create_noise_sampler(self, x, sigmas, p):
- """For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""
- if shared.opts.no_dpmpp_sde_batch_determinism:
- return None
- from k_diffusion.sampling import BrownianTreeNoiseSampler
- sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
- current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
- return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds)
- def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
- raise NotImplementedError()
- def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
- raise NotImplementedError()
- def add_infotext(self, p):
- if self.model_wrap_cfg.padded_cond_uncond:
- p.extra_generation_params["Pad conds"] = True
- if self.model_wrap_cfg.padded_cond_uncond_v0:
- p.extra_generation_params["Pad conds v0"] = True
|