123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 |
- import torch
- import tqdm
- import k_diffusion.sampling
- import numpy as np
- from modules import shared
- from modules.models.diffusion.uni_pc import uni_pc
- @torch.no_grad()
- def ddim(model, x, timesteps, extra_args=None, callback=None, disable=None, eta=0.0):
- alphas_cumprod = model.inner_model.inner_model.alphas_cumprod
- alphas = alphas_cumprod[timesteps]
- alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(torch.float64 if x.device.type != 'mps' else torch.float32)
- sqrt_one_minus_alphas = torch.sqrt(1 - alphas)
- sigmas = eta * np.sqrt((1 - alphas_prev.cpu().numpy()) / (1 - alphas.cpu()) * (1 - alphas.cpu() / alphas_prev.cpu().numpy()))
- extra_args = {} if extra_args is None else extra_args
- s_in = x.new_ones((x.shape[0]))
- s_x = x.new_ones((x.shape[0], 1, 1, 1))
- for i in tqdm.trange(len(timesteps) - 1, disable=disable):
- index = len(timesteps) - 1 - i
- e_t = model(x, timesteps[index].item() * s_in, **extra_args)
- a_t = alphas[index].item() * s_x
- a_prev = alphas_prev[index].item() * s_x
- sigma_t = sigmas[index].item() * s_x
- sqrt_one_minus_at = sqrt_one_minus_alphas[index].item() * s_x
- pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
- dir_xt = (1. - a_prev - sigma_t ** 2).sqrt() * e_t
- noise = sigma_t * k_diffusion.sampling.torch.randn_like(x)
- x = a_prev.sqrt() * pred_x0 + dir_xt + noise
- if callback is not None:
- callback({'x': x, 'i': i, 'sigma': 0, 'sigma_hat': 0, 'denoised': pred_x0})
- return x
- @torch.no_grad()
- def plms(model, x, timesteps, extra_args=None, callback=None, disable=None):
- alphas_cumprod = model.inner_model.inner_model.alphas_cumprod
- alphas = alphas_cumprod[timesteps]
- alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(torch.float64 if x.device.type != 'mps' else torch.float32)
- sqrt_one_minus_alphas = torch.sqrt(1 - alphas)
- extra_args = {} if extra_args is None else extra_args
- s_in = x.new_ones([x.shape[0]])
- s_x = x.new_ones((x.shape[0], 1, 1, 1))
- old_eps = []
- def get_x_prev_and_pred_x0(e_t, index):
- # select parameters corresponding to the currently considered timestep
- a_t = alphas[index].item() * s_x
- a_prev = alphas_prev[index].item() * s_x
- sqrt_one_minus_at = sqrt_one_minus_alphas[index].item() * s_x
- # current prediction for x_0
- pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
- # direction pointing to x_t
- dir_xt = (1. - a_prev).sqrt() * e_t
- x_prev = a_prev.sqrt() * pred_x0 + dir_xt
- return x_prev, pred_x0
- for i in tqdm.trange(len(timesteps) - 1, disable=disable):
- index = len(timesteps) - 1 - i
- ts = timesteps[index].item() * s_in
- t_next = timesteps[max(index - 1, 0)].item() * s_in
- e_t = model(x, ts, **extra_args)
- if len(old_eps) == 0:
- # Pseudo Improved Euler (2nd order)
- x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
- e_t_next = model(x_prev, t_next, **extra_args)
- e_t_prime = (e_t + e_t_next) / 2
- elif len(old_eps) == 1:
- # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
- e_t_prime = (3 * e_t - old_eps[-1]) / 2
- elif len(old_eps) == 2:
- # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
- e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
- else:
- # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
- e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
- x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
- old_eps.append(e_t)
- if len(old_eps) >= 4:
- old_eps.pop(0)
- x = x_prev
- if callback is not None:
- callback({'x': x, 'i': i, 'sigma': 0, 'sigma_hat': 0, 'denoised': pred_x0})
- return x
- class UniPCCFG(uni_pc.UniPC):
- def __init__(self, cfg_model, extra_args, callback, *args, **kwargs):
- super().__init__(None, *args, **kwargs)
- def after_update(x, model_x):
- callback({'x': x, 'i': self.index, 'sigma': 0, 'sigma_hat': 0, 'denoised': model_x})
- self.index += 1
- self.cfg_model = cfg_model
- self.extra_args = extra_args
- self.callback = callback
- self.index = 0
- self.after_update = after_update
- def get_model_input_time(self, t_continuous):
- return (t_continuous - 1. / self.noise_schedule.total_N) * 1000.
- def model(self, x, t):
- t_input = self.get_model_input_time(t)
- res = self.cfg_model(x, t_input, **self.extra_args)
- return res
- def unipc(model, x, timesteps, extra_args=None, callback=None, disable=None, is_img2img=False):
- alphas_cumprod = model.inner_model.inner_model.alphas_cumprod
- ns = uni_pc.NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
- t_start = timesteps[-1] / 1000 + 1 / 1000 if is_img2img else None # this is likely off by a bit - if someone wants to fix it please by all means
- unipc_sampler = UniPCCFG(model, extra_args, callback, ns, predict_x0=True, thresholding=False, variant=shared.opts.uni_pc_variant)
- x = unipc_sampler.sample(x, steps=len(timesteps), t_start=t_start, skip_type=shared.opts.uni_pc_skip_type, method="multistep", order=shared.opts.uni_pc_order, lower_order_final=shared.opts.uni_pc_lower_order_final)
- return x
|