sd_samplers_timesteps.py 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167
  1. import torch
  2. import inspect
  3. import sys
  4. from modules import devices, sd_samplers_common, sd_samplers_timesteps_impl
  5. from modules.sd_samplers_cfg_denoiser import CFGDenoiser
  6. from modules.script_callbacks import ExtraNoiseParams, extra_noise_callback
  7. from modules.shared import opts
  8. import modules.shared as shared
  9. samplers_timesteps = [
  10. ('DDIM', sd_samplers_timesteps_impl.ddim, ['ddim'], {}),
  11. ('PLMS', sd_samplers_timesteps_impl.plms, ['plms'], {}),
  12. ('UniPC', sd_samplers_timesteps_impl.unipc, ['unipc'], {}),
  13. ]
  14. samplers_data_timesteps = [
  15. sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: CompVisSampler(funcname, model), aliases, options)
  16. for label, funcname, aliases, options in samplers_timesteps
  17. ]
  18. class CompVisTimestepsDenoiser(torch.nn.Module):
  19. def __init__(self, model, *args, **kwargs):
  20. super().__init__(*args, **kwargs)
  21. self.inner_model = model
  22. def forward(self, input, timesteps, **kwargs):
  23. return self.inner_model.apply_model(input, timesteps, **kwargs)
  24. class CompVisTimestepsVDenoiser(torch.nn.Module):
  25. def __init__(self, model, *args, **kwargs):
  26. super().__init__(*args, **kwargs)
  27. self.inner_model = model
  28. def predict_eps_from_z_and_v(self, x_t, t, v):
  29. return self.inner_model.sqrt_alphas_cumprod[t.to(torch.int), None, None, None] * v + self.inner_model.sqrt_one_minus_alphas_cumprod[t.to(torch.int), None, None, None] * x_t
  30. def forward(self, input, timesteps, **kwargs):
  31. model_output = self.inner_model.apply_model(input, timesteps, **kwargs)
  32. e_t = self.predict_eps_from_z_and_v(input, timesteps, model_output)
  33. return e_t
  34. class CFGDenoiserTimesteps(CFGDenoiser):
  35. def __init__(self, sampler):
  36. super().__init__(sampler)
  37. self.alphas = shared.sd_model.alphas_cumprod
  38. self.mask_before_denoising = True
  39. def get_pred_x0(self, x_in, x_out, sigma):
  40. ts = sigma.to(dtype=int)
  41. a_t = self.alphas[ts][:, None, None, None]
  42. sqrt_one_minus_at = (1 - a_t).sqrt()
  43. pred_x0 = (x_in - sqrt_one_minus_at * x_out) / a_t.sqrt()
  44. return pred_x0
  45. @property
  46. def inner_model(self):
  47. if self.model_wrap is None:
  48. denoiser = CompVisTimestepsVDenoiser if shared.sd_model.parameterization == "v" else CompVisTimestepsDenoiser
  49. self.model_wrap = denoiser(shared.sd_model)
  50. return self.model_wrap
  51. class CompVisSampler(sd_samplers_common.Sampler):
  52. def __init__(self, funcname, sd_model):
  53. super().__init__(funcname)
  54. self.eta_option_field = 'eta_ddim'
  55. self.eta_infotext_field = 'Eta DDIM'
  56. self.eta_default = 0.0
  57. self.model_wrap_cfg = CFGDenoiserTimesteps(self)
  58. def get_timesteps(self, p, steps):
  59. discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
  60. if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma:
  61. discard_next_to_last_sigma = True
  62. p.extra_generation_params["Discard penultimate sigma"] = True
  63. steps += 1 if discard_next_to_last_sigma else 0
  64. timesteps = torch.clip(torch.asarray(list(range(0, 1000, 1000 // steps)), device=devices.device) + 1, 0, 999)
  65. return timesteps
  66. def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
  67. steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
  68. timesteps = self.get_timesteps(p, steps)
  69. timesteps_sched = timesteps[:t_enc]
  70. alphas_cumprod = shared.sd_model.alphas_cumprod
  71. sqrt_alpha_cumprod = torch.sqrt(alphas_cumprod[timesteps[t_enc]])
  72. sqrt_one_minus_alpha_cumprod = torch.sqrt(1 - alphas_cumprod[timesteps[t_enc]])
  73. xi = x * sqrt_alpha_cumprod + noise * sqrt_one_minus_alpha_cumprod
  74. if opts.img2img_extra_noise > 0:
  75. p.extra_generation_params["Extra noise"] = opts.img2img_extra_noise
  76. extra_noise_params = ExtraNoiseParams(noise, x)
  77. extra_noise_callback(extra_noise_params)
  78. noise = extra_noise_params.noise
  79. xi += noise * opts.img2img_extra_noise * sqrt_alpha_cumprod
  80. extra_params_kwargs = self.initialize(p)
  81. parameters = inspect.signature(self.func).parameters
  82. if 'timesteps' in parameters:
  83. extra_params_kwargs['timesteps'] = timesteps_sched
  84. if 'is_img2img' in parameters:
  85. extra_params_kwargs['is_img2img'] = True
  86. self.model_wrap_cfg.init_latent = x
  87. self.last_latent = x
  88. self.sampler_extra_args = {
  89. 'cond': conditioning,
  90. 'image_cond': image_conditioning,
  91. 'uncond': unconditional_conditioning,
  92. 'cond_scale': p.cfg_scale,
  93. 's_min_uncond': self.s_min_uncond
  94. }
  95. samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
  96. if self.model_wrap_cfg.padded_cond_uncond:
  97. p.extra_generation_params["Pad conds"] = True
  98. return samples
  99. def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
  100. steps = steps or p.steps
  101. timesteps = self.get_timesteps(p, steps)
  102. extra_params_kwargs = self.initialize(p)
  103. parameters = inspect.signature(self.func).parameters
  104. if 'timesteps' in parameters:
  105. extra_params_kwargs['timesteps'] = timesteps
  106. self.last_latent = x
  107. self.sampler_extra_args = {
  108. 'cond': conditioning,
  109. 'image_cond': image_conditioning,
  110. 'uncond': unconditional_conditioning,
  111. 'cond_scale': p.cfg_scale,
  112. 's_min_uncond': self.s_min_uncond
  113. }
  114. samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
  115. if self.model_wrap_cfg.padded_cond_uncond:
  116. p.extra_generation_params["Pad conds"] = True
  117. return samples
  118. sys.modules['modules.sd_samplers_compvis'] = sys.modules[__name__]
  119. VanillaStableDiffusionSampler = CompVisSampler # temp. compatibility with older extensions