1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- import glob
- import os
- import sys
- import traceback
- import torch
- from modules import devices
- class HypernetworkModule(torch.nn.Module):
- def __init__(self, dim, state_dict):
- super().__init__()
- self.linear1 = torch.nn.Linear(dim, dim * 2)
- self.linear2 = torch.nn.Linear(dim * 2, dim)
- self.load_state_dict(state_dict, strict=True)
- self.to(devices.device)
- def forward(self, x):
- return x + (self.linear2(self.linear1(x)))
- class Hypernetwork:
- filename = None
- name = None
- def __init__(self, filename):
- self.filename = filename
- self.name = os.path.splitext(os.path.basename(filename))[0]
- self.layers = {}
- state_dict = torch.load(filename, map_location='cpu')
- for size, sd in state_dict.items():
- self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
- def load_hypernetworks(path):
- res = {}
- for filename in glob.iglob(path + '**/*.pt', recursive=True):
- try:
- hn = Hypernetwork(filename)
- res[hn.name] = hn
- except Exception:
- print(f"Error loading hypernetwork {filename}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
- return res
- def apply(self, x, context=None, mask=None, original=None):
- if CrossAttention.hypernetwork is not None and context.shape[2] in CrossAttention.hypernetwork:
- if context.shape[1] == 77 and CrossAttention.noise_cond:
- context = context + (torch.randn_like(context) * 0.1)
- h_k, h_v = CrossAttention.hypernetwork[context.shape[2]]
- k = self.to_k(h_k(context))
- v = self.to_v(h_v(context))
- else:
- k = self.to_k(context)
- v = self.to_v(context)
|