processing.py 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679
  1. from __future__ import annotations
  2. import json
  3. import logging
  4. import math
  5. import os
  6. import sys
  7. import hashlib
  8. from dataclasses import dataclass, field
  9. import torch
  10. import numpy as np
  11. from PIL import Image, ImageOps
  12. import random
  13. import cv2
  14. from skimage import exposure
  15. from typing import Any
  16. import modules.sd_hijack
  17. from modules import devices, prompt_parser, masking, sd_samplers, lowvram, infotext_utils, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors, rng
  18. from modules.rng import slerp # noqa: F401
  19. from modules.sd_hijack import model_hijack
  20. from modules.sd_samplers_common import images_tensor_to_samples, decode_first_stage, approximation_indexes
  21. from modules.shared import opts, cmd_opts, state
  22. import modules.shared as shared
  23. import modules.paths as paths
  24. import modules.face_restoration
  25. import modules.images as images
  26. import modules.styles
  27. import modules.sd_models as sd_models
  28. import modules.sd_vae as sd_vae
  29. from ldm.data.util import AddMiDaS
  30. from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
  31. from einops import repeat, rearrange
  32. from blendmodes.blend import blendLayers, BlendType
  33. # some of those options should not be changed at all because they would break the model, so I removed them from options.
  34. opt_C = 4
  35. opt_f = 8
  36. def setup_color_correction(image):
  37. logging.info("Calibrating color correction.")
  38. correction_target = cv2.cvtColor(np.asarray(image.copy()), cv2.COLOR_RGB2LAB)
  39. return correction_target
  40. def apply_color_correction(correction, original_image):
  41. logging.info("Applying color correction.")
  42. image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
  43. cv2.cvtColor(
  44. np.asarray(original_image),
  45. cv2.COLOR_RGB2LAB
  46. ),
  47. correction,
  48. channel_axis=2
  49. ), cv2.COLOR_LAB2RGB).astype("uint8"))
  50. image = blendLayers(image, original_image, BlendType.LUMINOSITY)
  51. return image.convert('RGB')
  52. def uncrop(image, dest_size, paste_loc):
  53. x, y, w, h = paste_loc
  54. base_image = Image.new('RGBA', dest_size)
  55. image = images.resize_image(1, image, w, h)
  56. base_image.paste(image, (x, y))
  57. image = base_image
  58. return image
  59. def apply_overlay(image, paste_loc, overlay):
  60. if overlay is None:
  61. return image, image.copy()
  62. if paste_loc is not None:
  63. image = uncrop(image, (overlay.width, overlay.height), paste_loc)
  64. original_denoised_image = image.copy()
  65. image = image.convert('RGBA')
  66. image.alpha_composite(overlay)
  67. image = image.convert('RGB')
  68. return image, original_denoised_image
  69. def create_binary_mask(image, round=True):
  70. if image.mode == 'RGBA' and image.getextrema()[-1] != (255, 255):
  71. if round:
  72. image = image.split()[-1].convert("L").point(lambda x: 255 if x > 128 else 0)
  73. else:
  74. image = image.split()[-1].convert("L")
  75. else:
  76. image = image.convert('L')
  77. return image
  78. def txt2img_image_conditioning(sd_model, x, width, height):
  79. if sd_model.model.conditioning_key in {'hybrid', 'concat'}: # Inpainting models
  80. # The "masked-image" in this case will just be all 0.5 since the entire image is masked.
  81. image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5
  82. image_conditioning = images_tensor_to_samples(image_conditioning, approximation_indexes.get(opts.sd_vae_encode_method))
  83. # Add the fake full 1s mask to the first dimension.
  84. image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
  85. image_conditioning = image_conditioning.to(x.dtype)
  86. return image_conditioning
  87. elif sd_model.model.conditioning_key == "crossattn-adm": # UnCLIP models
  88. return x.new_zeros(x.shape[0], 2*sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device)
  89. else:
  90. sd = sd_model.model.state_dict()
  91. diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None)
  92. if diffusion_model_input is not None:
  93. if diffusion_model_input.shape[1] == 9:
  94. # The "masked-image" in this case will just be all 0.5 since the entire image is masked.
  95. image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5
  96. image_conditioning = images_tensor_to_samples(image_conditioning,
  97. approximation_indexes.get(opts.sd_vae_encode_method))
  98. # Add the fake full 1s mask to the first dimension.
  99. image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
  100. image_conditioning = image_conditioning.to(x.dtype)
  101. return image_conditioning
  102. # Dummy zero conditioning if we're not using inpainting or unclip models.
  103. # Still takes up a bit of memory, but no encoder call.
  104. # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
  105. return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
  106. @dataclass(repr=False)
  107. class StableDiffusionProcessing:
  108. sd_model: object = None
  109. outpath_samples: str = None
  110. outpath_grids: str = None
  111. prompt: str = ""
  112. prompt_for_display: str = None
  113. negative_prompt: str = ""
  114. styles: list[str] = None
  115. seed: int = -1
  116. subseed: int = -1
  117. subseed_strength: float = 0
  118. seed_resize_from_h: int = -1
  119. seed_resize_from_w: int = -1
  120. seed_enable_extras: bool = True
  121. sampler_name: str = None
  122. batch_size: int = 1
  123. n_iter: int = 1
  124. steps: int = 50
  125. cfg_scale: float = 7.0
  126. width: int = 512
  127. height: int = 512
  128. restore_faces: bool = None
  129. tiling: bool = None
  130. do_not_save_samples: bool = False
  131. do_not_save_grid: bool = False
  132. extra_generation_params: dict[str, Any] = None
  133. overlay_images: list = None
  134. eta: float = None
  135. do_not_reload_embeddings: bool = False
  136. denoising_strength: float = None
  137. ddim_discretize: str = None
  138. s_min_uncond: float = None
  139. s_churn: float = None
  140. s_tmax: float = None
  141. s_tmin: float = None
  142. s_noise: float = None
  143. override_settings: dict[str, Any] = None
  144. override_settings_restore_afterwards: bool = True
  145. sampler_index: int = None
  146. refiner_checkpoint: str = None
  147. refiner_switch_at: float = None
  148. token_merging_ratio = 0
  149. token_merging_ratio_hr = 0
  150. disable_extra_networks: bool = False
  151. firstpass_image: Image = None
  152. scripts_value: scripts.ScriptRunner = field(default=None, init=False)
  153. script_args_value: list = field(default=None, init=False)
  154. scripts_setup_complete: bool = field(default=False, init=False)
  155. cached_uc = [None, None]
  156. cached_c = [None, None]
  157. comments: dict = None
  158. sampler: sd_samplers_common.Sampler | None = field(default=None, init=False)
  159. is_using_inpainting_conditioning: bool = field(default=False, init=False)
  160. paste_to: tuple | None = field(default=None, init=False)
  161. is_hr_pass: bool = field(default=False, init=False)
  162. c: tuple = field(default=None, init=False)
  163. uc: tuple = field(default=None, init=False)
  164. rng: rng.ImageRNG | None = field(default=None, init=False)
  165. step_multiplier: int = field(default=1, init=False)
  166. color_corrections: list = field(default=None, init=False)
  167. all_prompts: list = field(default=None, init=False)
  168. all_negative_prompts: list = field(default=None, init=False)
  169. all_seeds: list = field(default=None, init=False)
  170. all_subseeds: list = field(default=None, init=False)
  171. iteration: int = field(default=0, init=False)
  172. main_prompt: str = field(default=None, init=False)
  173. main_negative_prompt: str = field(default=None, init=False)
  174. prompts: list = field(default=None, init=False)
  175. negative_prompts: list = field(default=None, init=False)
  176. seeds: list = field(default=None, init=False)
  177. subseeds: list = field(default=None, init=False)
  178. extra_network_data: dict = field(default=None, init=False)
  179. user: str = field(default=None, init=False)
  180. sd_model_name: str = field(default=None, init=False)
  181. sd_model_hash: str = field(default=None, init=False)
  182. sd_vae_name: str = field(default=None, init=False)
  183. sd_vae_hash: str = field(default=None, init=False)
  184. is_api: bool = field(default=False, init=False)
  185. def __post_init__(self):
  186. if self.sampler_index is not None:
  187. print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
  188. self.comments = {}
  189. if self.styles is None:
  190. self.styles = []
  191. self.sampler_noise_scheduler_override = None
  192. self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond
  193. self.s_churn = self.s_churn if self.s_churn is not None else opts.s_churn
  194. self.s_tmin = self.s_tmin if self.s_tmin is not None else opts.s_tmin
  195. self.s_tmax = (self.s_tmax if self.s_tmax is not None else opts.s_tmax) or float('inf')
  196. self.s_noise = self.s_noise if self.s_noise is not None else opts.s_noise
  197. self.extra_generation_params = self.extra_generation_params or {}
  198. self.override_settings = self.override_settings or {}
  199. self.script_args = self.script_args or {}
  200. self.refiner_checkpoint_info = None
  201. if not self.seed_enable_extras:
  202. self.subseed = -1
  203. self.subseed_strength = 0
  204. self.seed_resize_from_h = 0
  205. self.seed_resize_from_w = 0
  206. self.cached_uc = StableDiffusionProcessing.cached_uc
  207. self.cached_c = StableDiffusionProcessing.cached_c
  208. @property
  209. def sd_model(self):
  210. return shared.sd_model
  211. @sd_model.setter
  212. def sd_model(self, value):
  213. pass
  214. @property
  215. def scripts(self):
  216. return self.scripts_value
  217. @scripts.setter
  218. def scripts(self, value):
  219. self.scripts_value = value
  220. if self.scripts_value and self.script_args_value and not self.scripts_setup_complete:
  221. self.setup_scripts()
  222. @property
  223. def script_args(self):
  224. return self.script_args_value
  225. @script_args.setter
  226. def script_args(self, value):
  227. self.script_args_value = value
  228. if self.scripts_value and self.script_args_value and not self.scripts_setup_complete:
  229. self.setup_scripts()
  230. def setup_scripts(self):
  231. self.scripts_setup_complete = True
  232. self.scripts.setup_scrips(self, is_ui=not self.is_api)
  233. def comment(self, text):
  234. self.comments[text] = 1
  235. def txt2img_image_conditioning(self, x, width=None, height=None):
  236. self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'}
  237. return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height)
  238. def depth2img_image_conditioning(self, source_image):
  239. # Use the AddMiDaS helper to Format our source image to suit the MiDaS model
  240. transformer = AddMiDaS(model_type="dpt_hybrid")
  241. transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")})
  242. midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device)
  243. midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size)
  244. conditioning_image = images_tensor_to_samples(source_image*0.5+0.5, approximation_indexes.get(opts.sd_vae_encode_method))
  245. conditioning = torch.nn.functional.interpolate(
  246. self.sd_model.depth_model(midas_in),
  247. size=conditioning_image.shape[2:],
  248. mode="bicubic",
  249. align_corners=False,
  250. )
  251. (depth_min, depth_max) = torch.aminmax(conditioning)
  252. conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1.
  253. return conditioning
  254. def edit_image_conditioning(self, source_image):
  255. conditioning_image = shared.sd_model.encode_first_stage(source_image).mode()
  256. return conditioning_image
  257. def unclip_image_conditioning(self, source_image):
  258. c_adm = self.sd_model.embedder(source_image)
  259. if self.sd_model.noise_augmentor is not None:
  260. noise_level = 0 # TODO: Allow other noise levels?
  261. c_adm, noise_level_emb = self.sd_model.noise_augmentor(c_adm, noise_level=repeat(torch.tensor([noise_level]).to(c_adm.device), '1 -> b', b=c_adm.shape[0]))
  262. c_adm = torch.cat((c_adm, noise_level_emb), 1)
  263. return c_adm
  264. def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None, round_image_mask=True):
  265. self.is_using_inpainting_conditioning = True
  266. # Handle the different mask inputs
  267. if image_mask is not None:
  268. if torch.is_tensor(image_mask):
  269. conditioning_mask = image_mask
  270. else:
  271. conditioning_mask = np.array(image_mask.convert("L"))
  272. conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
  273. conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
  274. if round_image_mask:
  275. # Caller is requesting a discretized mask as input, so we round to either 1.0 or 0.0
  276. conditioning_mask = torch.round(conditioning_mask)
  277. else:
  278. conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:])
  279. # Create another latent image, this time with a masked version of the original input.
  280. # Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
  281. conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype)
  282. conditioning_image = torch.lerp(
  283. source_image,
  284. source_image * (1.0 - conditioning_mask),
  285. getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
  286. )
  287. # Encode the new masked image using first stage of network.
  288. conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
  289. # Create the concatenated conditioning tensor to be fed to `c_concat`
  290. conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
  291. conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
  292. image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
  293. image_conditioning = image_conditioning.to(shared.device).type(self.sd_model.dtype)
  294. return image_conditioning
  295. def img2img_image_conditioning(self, source_image, latent_image, image_mask=None, round_image_mask=True):
  296. source_image = devices.cond_cast_float(source_image)
  297. # HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
  298. # identify itself with a field common to all models. The conditioning_key is also hybrid.
  299. if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
  300. return self.depth2img_image_conditioning(source_image)
  301. if self.sd_model.cond_stage_key == "edit":
  302. return self.edit_image_conditioning(source_image)
  303. if self.sampler.conditioning_key in {'hybrid', 'concat'}:
  304. return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask, round_image_mask=round_image_mask)
  305. if self.sampler.conditioning_key == "crossattn-adm":
  306. return self.unclip_image_conditioning(source_image)
  307. sd = self.sampler.model_wrap.inner_model.model.state_dict()
  308. diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None)
  309. if diffusion_model_input is not None:
  310. if diffusion_model_input.shape[1] == 9:
  311. return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
  312. # Dummy zero conditioning if we're not using inpainting or depth model.
  313. return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
  314. def init(self, all_prompts, all_seeds, all_subseeds):
  315. pass
  316. def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
  317. raise NotImplementedError()
  318. def close(self):
  319. self.sampler = None
  320. self.c = None
  321. self.uc = None
  322. if not opts.persistent_cond_cache:
  323. StableDiffusionProcessing.cached_c = [None, None]
  324. StableDiffusionProcessing.cached_uc = [None, None]
  325. def get_token_merging_ratio(self, for_hr=False):
  326. if for_hr:
  327. return self.token_merging_ratio_hr or opts.token_merging_ratio_hr or self.token_merging_ratio or opts.token_merging_ratio
  328. return self.token_merging_ratio or opts.token_merging_ratio
  329. def setup_prompts(self):
  330. if isinstance(self.prompt,list):
  331. self.all_prompts = self.prompt
  332. elif isinstance(self.negative_prompt, list):
  333. self.all_prompts = [self.prompt] * len(self.negative_prompt)
  334. else:
  335. self.all_prompts = self.batch_size * self.n_iter * [self.prompt]
  336. if isinstance(self.negative_prompt, list):
  337. self.all_negative_prompts = self.negative_prompt
  338. else:
  339. self.all_negative_prompts = [self.negative_prompt] * len(self.all_prompts)
  340. if len(self.all_prompts) != len(self.all_negative_prompts):
  341. raise RuntimeError(f"Received a different number of prompts ({len(self.all_prompts)}) and negative prompts ({len(self.all_negative_prompts)})")
  342. self.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_prompts]
  343. self.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_negative_prompts]
  344. self.main_prompt = self.all_prompts[0]
  345. self.main_negative_prompt = self.all_negative_prompts[0]
  346. def cached_params(self, required_prompts, steps, extra_network_data, hires_steps=None, use_old_scheduling=False):
  347. """Returns parameters that invalidate the cond cache if changed"""
  348. return (
  349. required_prompts,
  350. steps,
  351. hires_steps,
  352. use_old_scheduling,
  353. opts.CLIP_stop_at_last_layers,
  354. shared.sd_model.sd_checkpoint_info,
  355. extra_network_data,
  356. opts.sdxl_crop_left,
  357. opts.sdxl_crop_top,
  358. self.width,
  359. self.height,
  360. opts.fp8_storage,
  361. opts.cache_fp16_weight,
  362. opts.emphasis,
  363. )
  364. def get_conds_with_caching(self, function, required_prompts, steps, caches, extra_network_data, hires_steps=None):
  365. """
  366. Returns the result of calling function(shared.sd_model, required_prompts, steps)
  367. using a cache to store the result if the same arguments have been used before.
  368. cache is an array containing two elements. The first element is a tuple
  369. representing the previously used arguments, or None if no arguments
  370. have been used before. The second element is where the previously
  371. computed result is stored.
  372. caches is a list with items described above.
  373. """
  374. if shared.opts.use_old_scheduling:
  375. old_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(required_prompts, steps, hires_steps, False)
  376. new_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(required_prompts, steps, hires_steps, True)
  377. if old_schedules != new_schedules:
  378. self.extra_generation_params["Old prompt editing timelines"] = True
  379. cached_params = self.cached_params(required_prompts, steps, extra_network_data, hires_steps, shared.opts.use_old_scheduling)
  380. for cache in caches:
  381. if cache[0] is not None and cached_params == cache[0]:
  382. return cache[1]
  383. cache = caches[0]
  384. with devices.autocast():
  385. cache[1] = function(shared.sd_model, required_prompts, steps, hires_steps, shared.opts.use_old_scheduling)
  386. cache[0] = cached_params
  387. return cache[1]
  388. def setup_conds(self):
  389. prompts = prompt_parser.SdConditioning(self.prompts, width=self.width, height=self.height)
  390. negative_prompts = prompt_parser.SdConditioning(self.negative_prompts, width=self.width, height=self.height, is_negative_prompt=True)
  391. sampler_config = sd_samplers.find_sampler_config(self.sampler_name)
  392. total_steps = sampler_config.total_steps(self.steps) if sampler_config else self.steps
  393. self.step_multiplier = total_steps // self.steps
  394. self.firstpass_steps = total_steps
  395. self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, total_steps, [self.cached_uc], self.extra_network_data)
  396. self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, total_steps, [self.cached_c], self.extra_network_data)
  397. def get_conds(self):
  398. return self.c, self.uc
  399. def parse_extra_network_prompts(self):
  400. self.prompts, self.extra_network_data = extra_networks.parse_prompts(self.prompts)
  401. def save_samples(self) -> bool:
  402. """Returns whether generated images need to be written to disk"""
  403. return opts.samples_save and not self.do_not_save_samples and (opts.save_incomplete_images or not state.interrupted and not state.skipped)
  404. class Processed:
  405. def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
  406. self.images = images_list
  407. self.prompt = p.prompt
  408. self.negative_prompt = p.negative_prompt
  409. self.seed = seed
  410. self.subseed = subseed
  411. self.subseed_strength = p.subseed_strength
  412. self.info = info
  413. self.comments = "".join(f"{comment}\n" for comment in p.comments)
  414. self.width = p.width
  415. self.height = p.height
  416. self.sampler_name = p.sampler_name
  417. self.cfg_scale = p.cfg_scale
  418. self.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
  419. self.steps = p.steps
  420. self.batch_size = p.batch_size
  421. self.restore_faces = p.restore_faces
  422. self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None
  423. self.sd_model_name = p.sd_model_name
  424. self.sd_model_hash = p.sd_model_hash
  425. self.sd_vae_name = p.sd_vae_name
  426. self.sd_vae_hash = p.sd_vae_hash
  427. self.seed_resize_from_w = p.seed_resize_from_w
  428. self.seed_resize_from_h = p.seed_resize_from_h
  429. self.denoising_strength = getattr(p, 'denoising_strength', None)
  430. self.extra_generation_params = p.extra_generation_params
  431. self.index_of_first_image = index_of_first_image
  432. self.styles = p.styles
  433. self.job_timestamp = state.job_timestamp
  434. self.clip_skip = opts.CLIP_stop_at_last_layers
  435. self.token_merging_ratio = p.token_merging_ratio
  436. self.token_merging_ratio_hr = p.token_merging_ratio_hr
  437. self.eta = p.eta
  438. self.ddim_discretize = p.ddim_discretize
  439. self.s_churn = p.s_churn
  440. self.s_tmin = p.s_tmin
  441. self.s_tmax = p.s_tmax
  442. self.s_noise = p.s_noise
  443. self.s_min_uncond = p.s_min_uncond
  444. self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
  445. self.prompt = self.prompt if not isinstance(self.prompt, list) else self.prompt[0]
  446. self.negative_prompt = self.negative_prompt if not isinstance(self.negative_prompt, list) else self.negative_prompt[0]
  447. self.seed = int(self.seed if not isinstance(self.seed, list) else self.seed[0]) if self.seed is not None else -1
  448. self.subseed = int(self.subseed if not isinstance(self.subseed, list) else self.subseed[0]) if self.subseed is not None else -1
  449. self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning
  450. self.all_prompts = all_prompts or p.all_prompts or [self.prompt]
  451. self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
  452. self.all_seeds = all_seeds or p.all_seeds or [self.seed]
  453. self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
  454. self.infotexts = infotexts or [info]
  455. self.version = program_version()
  456. def js(self):
  457. obj = {
  458. "prompt": self.all_prompts[0],
  459. "all_prompts": self.all_prompts,
  460. "negative_prompt": self.all_negative_prompts[0],
  461. "all_negative_prompts": self.all_negative_prompts,
  462. "seed": self.seed,
  463. "all_seeds": self.all_seeds,
  464. "subseed": self.subseed,
  465. "all_subseeds": self.all_subseeds,
  466. "subseed_strength": self.subseed_strength,
  467. "width": self.width,
  468. "height": self.height,
  469. "sampler_name": self.sampler_name,
  470. "cfg_scale": self.cfg_scale,
  471. "steps": self.steps,
  472. "batch_size": self.batch_size,
  473. "restore_faces": self.restore_faces,
  474. "face_restoration_model": self.face_restoration_model,
  475. "sd_model_name": self.sd_model_name,
  476. "sd_model_hash": self.sd_model_hash,
  477. "sd_vae_name": self.sd_vae_name,
  478. "sd_vae_hash": self.sd_vae_hash,
  479. "seed_resize_from_w": self.seed_resize_from_w,
  480. "seed_resize_from_h": self.seed_resize_from_h,
  481. "denoising_strength": self.denoising_strength,
  482. "extra_generation_params": self.extra_generation_params,
  483. "index_of_first_image": self.index_of_first_image,
  484. "infotexts": self.infotexts,
  485. "styles": self.styles,
  486. "job_timestamp": self.job_timestamp,
  487. "clip_skip": self.clip_skip,
  488. "is_using_inpainting_conditioning": self.is_using_inpainting_conditioning,
  489. "version": self.version,
  490. }
  491. return json.dumps(obj)
  492. def infotext(self, p: StableDiffusionProcessing, index):
  493. return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
  494. def get_token_merging_ratio(self, for_hr=False):
  495. return self.token_merging_ratio_hr if for_hr else self.token_merging_ratio
  496. def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
  497. g = rng.ImageRNG(shape, seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=seed_resize_from_h, seed_resize_from_w=seed_resize_from_w)
  498. return g.next()
  499. class DecodedSamples(list):
  500. already_decoded = True
  501. def decode_latent_batch(model, batch, target_device=None, check_for_nans=False):
  502. samples = DecodedSamples()
  503. for i in range(batch.shape[0]):
  504. sample = decode_first_stage(model, batch[i:i + 1])[0]
  505. if check_for_nans:
  506. try:
  507. devices.test_for_nans(sample, "vae")
  508. except devices.NansException as e:
  509. if shared.opts.auto_vae_precision_bfloat16:
  510. autofix_dtype = torch.bfloat16
  511. autofix_dtype_text = "bfloat16"
  512. autofix_dtype_setting = "Automatically convert VAE to bfloat16"
  513. autofix_dtype_comment = ""
  514. elif shared.opts.auto_vae_precision:
  515. autofix_dtype = torch.float32
  516. autofix_dtype_text = "32-bit float"
  517. autofix_dtype_setting = "Automatically revert VAE to 32-bit floats"
  518. autofix_dtype_comment = "\nTo always start with 32-bit VAE, use --no-half-vae commandline flag."
  519. else:
  520. raise e
  521. if devices.dtype_vae == autofix_dtype:
  522. raise e
  523. errors.print_error_explanation(
  524. "A tensor with all NaNs was produced in VAE.\n"
  525. f"Web UI will now convert VAE into {autofix_dtype_text} and retry.\n"
  526. f"To disable this behavior, disable the '{autofix_dtype_setting}' setting.{autofix_dtype_comment}"
  527. )
  528. devices.dtype_vae = autofix_dtype
  529. model.first_stage_model.to(devices.dtype_vae)
  530. batch = batch.to(devices.dtype_vae)
  531. sample = decode_first_stage(model, batch[i:i + 1])[0]
  532. if target_device is not None:
  533. sample = sample.to(target_device)
  534. samples.append(sample)
  535. return samples
  536. def get_fixed_seed(seed):
  537. if seed == '' or seed is None:
  538. seed = -1
  539. elif isinstance(seed, str):
  540. try:
  541. seed = int(seed)
  542. except Exception:
  543. seed = -1
  544. if seed == -1:
  545. return int(random.randrange(4294967294))
  546. return seed
  547. def fix_seed(p):
  548. p.seed = get_fixed_seed(p.seed)
  549. p.subseed = get_fixed_seed(p.subseed)
  550. def program_version():
  551. import launch
  552. res = launch.git_tag()
  553. if res == "<none>":
  554. res = None
  555. return res
  556. def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False, index=None, all_negative_prompts=None):
  557. if index is None:
  558. index = position_in_batch + iteration * p.batch_size
  559. if all_negative_prompts is None:
  560. all_negative_prompts = p.all_negative_prompts
  561. clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
  562. enable_hr = getattr(p, 'enable_hr', False)
  563. token_merging_ratio = p.get_token_merging_ratio()
  564. token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True)
  565. uses_ensd = opts.eta_noise_seed_delta != 0
  566. if uses_ensd:
  567. uses_ensd = sd_samplers_common.is_sampler_using_eta_noise_seed_delta(p)
  568. generation_params = {
  569. "Steps": p.steps,
  570. "Sampler": p.sampler_name,
  571. "CFG scale": p.cfg_scale,
  572. "Image CFG scale": getattr(p, 'image_cfg_scale', None),
  573. "Seed": p.all_seeds[0] if use_main_prompt else all_seeds[index],
  574. "Face restoration": opts.face_restoration_model if p.restore_faces else None,
  575. "Size": f"{p.width}x{p.height}",
  576. "Model hash": p.sd_model_hash if opts.add_model_hash_to_info else None,
  577. "Model": p.sd_model_name if opts.add_model_name_to_info else None,
  578. "FP8 weight": opts.fp8_storage if devices.fp8 else None,
  579. "Cache FP16 weight for LoRA": opts.cache_fp16_weight if devices.fp8 else None,
  580. "VAE hash": p.sd_vae_hash if opts.add_vae_hash_to_info else None,
  581. "VAE": p.sd_vae_name if opts.add_vae_name_to_info else None,
  582. "Variation seed": (None if p.subseed_strength == 0 else (p.all_subseeds[0] if use_main_prompt else all_subseeds[index])),
  583. "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
  584. "Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
  585. "Denoising strength": p.extra_generation_params.get("Denoising strength"),
  586. "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
  587. "Clip skip": None if clip_skip <= 1 else clip_skip,
  588. "ENSD": opts.eta_noise_seed_delta if uses_ensd else None,
  589. "Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio,
  590. "Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
  591. "Init image hash": getattr(p, 'init_img_hash', None),
  592. "RNG": opts.randn_source if opts.randn_source != "GPU" else None,
  593. "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
  594. "Tiling": "True" if p.tiling else None,
  595. **p.extra_generation_params,
  596. "Version": program_version() if opts.add_version_to_infotext else None,
  597. "User": p.user if opts.add_user_name_to_info else None,
  598. }
  599. generation_params_text = ", ".join([k if k == v else f'{k}: {infotext_utils.quote(v)}' for k, v in generation_params.items() if v is not None])
  600. prompt_text = p.main_prompt if use_main_prompt else all_prompts[index]
  601. negative_prompt_text = f"\nNegative prompt: {p.main_negative_prompt if use_main_prompt else all_negative_prompts[index]}" if all_negative_prompts[index] else ""
  602. return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip()
  603. def process_images(p: StableDiffusionProcessing) -> Processed:
  604. if p.scripts is not None:
  605. p.scripts.before_process(p)
  606. stored_opts = {k: opts.data[k] if k in opts.data else opts.get_default(k) for k in p.override_settings.keys() if k in opts.data}
  607. try:
  608. # if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint
  609. # and if after running refiner, the refiner model is not unloaded - webui swaps back to main model here, if model over is present it will be reloaded afterwards
  610. if sd_models.checkpoint_aliases.get(p.override_settings.get('sd_model_checkpoint')) is None:
  611. p.override_settings.pop('sd_model_checkpoint', None)
  612. sd_models.reload_model_weights()
  613. for k, v in p.override_settings.items():
  614. opts.set(k, v, is_api=True, run_callbacks=False)
  615. if k == 'sd_model_checkpoint':
  616. sd_models.reload_model_weights()
  617. if k == 'sd_vae':
  618. sd_vae.reload_vae_weights()
  619. sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio())
  620. res = process_images_inner(p)
  621. finally:
  622. sd_models.apply_token_merging(p.sd_model, 0)
  623. # restore opts to original state
  624. if p.override_settings_restore_afterwards:
  625. for k, v in stored_opts.items():
  626. setattr(opts, k, v)
  627. if k == 'sd_vae':
  628. sd_vae.reload_vae_weights()
  629. return res
  630. def process_images_inner(p: StableDiffusionProcessing) -> Processed:
  631. """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
  632. if isinstance(p.prompt, list):
  633. assert(len(p.prompt) > 0)
  634. else:
  635. assert p.prompt is not None
  636. devices.torch_gc()
  637. seed = get_fixed_seed(p.seed)
  638. subseed = get_fixed_seed(p.subseed)
  639. if p.restore_faces is None:
  640. p.restore_faces = opts.face_restoration
  641. if p.tiling is None:
  642. p.tiling = opts.tiling
  643. if p.refiner_checkpoint not in (None, "", "None", "none"):
  644. p.refiner_checkpoint_info = sd_models.get_closet_checkpoint_match(p.refiner_checkpoint)
  645. if p.refiner_checkpoint_info is None:
  646. raise Exception(f'Could not find checkpoint with name {p.refiner_checkpoint}')
  647. p.sd_model_name = shared.sd_model.sd_checkpoint_info.name_for_extra
  648. p.sd_model_hash = shared.sd_model.sd_model_hash
  649. p.sd_vae_name = sd_vae.get_loaded_vae_name()
  650. p.sd_vae_hash = sd_vae.get_loaded_vae_hash()
  651. modules.sd_hijack.model_hijack.apply_circular(p.tiling)
  652. modules.sd_hijack.model_hijack.clear_comments()
  653. p.setup_prompts()
  654. if isinstance(seed, list):
  655. p.all_seeds = seed
  656. else:
  657. p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
  658. if isinstance(subseed, list):
  659. p.all_subseeds = subseed
  660. else:
  661. p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
  662. if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
  663. model_hijack.embedding_db.load_textual_inversion_embeddings()
  664. if p.scripts is not None:
  665. p.scripts.process(p)
  666. infotexts = []
  667. output_images = []
  668. with torch.no_grad(), p.sd_model.ema_scope():
  669. with devices.autocast():
  670. p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
  671. # for OSX, loading the model during sampling changes the generated picture, so it is loaded here
  672. if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN":
  673. sd_vae_approx.model()
  674. sd_unet.apply_unet()
  675. if state.job_count == -1:
  676. state.job_count = p.n_iter
  677. for n in range(p.n_iter):
  678. p.iteration = n
  679. if state.skipped:
  680. state.skipped = False
  681. if state.interrupted or state.stopping_generation:
  682. break
  683. sd_models.reload_model_weights() # model can be changed for example by refiner
  684. p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
  685. p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
  686. p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
  687. p.subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
  688. p.rng = rng.ImageRNG((opt_C, p.height // opt_f, p.width // opt_f), p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w)
  689. if p.scripts is not None:
  690. p.scripts.before_process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
  691. if len(p.prompts) == 0:
  692. break
  693. p.parse_extra_network_prompts()
  694. if not p.disable_extra_networks:
  695. with devices.autocast():
  696. extra_networks.activate(p, p.extra_network_data)
  697. if p.scripts is not None:
  698. p.scripts.process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
  699. # params.txt should be saved after scripts.process_batch, since the
  700. # infotext could be modified by that callback
  701. # Example: a wildcard processed by process_batch sets an extra model
  702. # strength, which is saved as "Model Strength: 1.0" in the infotext
  703. if n == 0:
  704. with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
  705. processed = Processed(p, [])
  706. file.write(processed.infotext(p, 0))
  707. p.setup_conds()
  708. for comment in model_hijack.comments:
  709. p.comment(comment)
  710. p.extra_generation_params.update(model_hijack.extra_generation_params)
  711. if p.n_iter > 1:
  712. shared.state.job = f"Batch {n+1} out of {p.n_iter}"
  713. sd_models.apply_alpha_schedule_override(p.sd_model, p)
  714. with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
  715. samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
  716. if p.scripts is not None:
  717. ps = scripts.PostSampleArgs(samples_ddim)
  718. p.scripts.post_sample(p, ps)
  719. samples_ddim = ps.samples
  720. if getattr(samples_ddim, 'already_decoded', False):
  721. x_samples_ddim = samples_ddim
  722. else:
  723. if opts.sd_vae_decode_method != 'Full':
  724. p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method
  725. x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)
  726. x_samples_ddim = torch.stack(x_samples_ddim).float()
  727. x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
  728. del samples_ddim
  729. if lowvram.is_enabled(shared.sd_model):
  730. lowvram.send_everything_to_cpu()
  731. devices.torch_gc()
  732. state.nextjob()
  733. if p.scripts is not None:
  734. p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
  735. p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
  736. p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
  737. batch_params = scripts.PostprocessBatchListArgs(list(x_samples_ddim))
  738. p.scripts.postprocess_batch_list(p, batch_params, batch_number=n)
  739. x_samples_ddim = batch_params.images
  740. def infotext(index=0, use_main_prompt=False):
  741. return create_infotext(p, p.prompts, p.seeds, p.subseeds, use_main_prompt=use_main_prompt, index=index, all_negative_prompts=p.negative_prompts)
  742. save_samples = p.save_samples()
  743. for i, x_sample in enumerate(x_samples_ddim):
  744. p.batch_index = i
  745. x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
  746. x_sample = x_sample.astype(np.uint8)
  747. if p.restore_faces:
  748. if save_samples and opts.save_images_before_face_restoration:
  749. images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-face-restoration")
  750. devices.torch_gc()
  751. x_sample = modules.face_restoration.restore_faces(x_sample)
  752. devices.torch_gc()
  753. image = Image.fromarray(x_sample)
  754. if p.scripts is not None:
  755. pp = scripts.PostprocessImageArgs(image)
  756. p.scripts.postprocess_image(p, pp)
  757. image = pp.image
  758. mask_for_overlay = getattr(p, "mask_for_overlay", None)
  759. if not shared.opts.overlay_inpaint:
  760. overlay_image = None
  761. elif getattr(p, "overlay_images", None) is not None and i < len(p.overlay_images):
  762. overlay_image = p.overlay_images[i]
  763. else:
  764. overlay_image = None
  765. if p.scripts is not None:
  766. ppmo = scripts.PostProcessMaskOverlayArgs(i, mask_for_overlay, overlay_image)
  767. p.scripts.postprocess_maskoverlay(p, ppmo)
  768. mask_for_overlay, overlay_image = ppmo.mask_for_overlay, ppmo.overlay_image
  769. if p.color_corrections is not None and i < len(p.color_corrections):
  770. if save_samples and opts.save_images_before_color_correction:
  771. image_without_cc, _ = apply_overlay(image, p.paste_to, overlay_image)
  772. images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-color-correction")
  773. image = apply_color_correction(p.color_corrections[i], image)
  774. # If the intention is to show the output from the model
  775. # that is being composited over the original image,
  776. # we need to keep the original image around
  777. # and use it in the composite step.
  778. image, original_denoised_image = apply_overlay(image, p.paste_to, overlay_image)
  779. if p.scripts is not None:
  780. pp = scripts.PostprocessImageArgs(image)
  781. p.scripts.postprocess_image_after_composite(p, pp)
  782. image = pp.image
  783. if save_samples:
  784. images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p)
  785. text = infotext(i)
  786. infotexts.append(text)
  787. if opts.enable_pnginfo:
  788. image.info["parameters"] = text
  789. output_images.append(image)
  790. if mask_for_overlay is not None:
  791. if opts.return_mask or opts.save_mask:
  792. image_mask = mask_for_overlay.convert('RGB')
  793. if save_samples and opts.save_mask:
  794. images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask")
  795. if opts.return_mask:
  796. output_images.append(image_mask)
  797. if opts.return_mask_composite or opts.save_mask_composite:
  798. image_mask_composite = Image.composite(original_denoised_image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
  799. if save_samples and opts.save_mask_composite:
  800. images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite")
  801. if opts.return_mask_composite:
  802. output_images.append(image_mask_composite)
  803. del x_samples_ddim
  804. devices.torch_gc()
  805. if not infotexts:
  806. infotexts.append(Processed(p, []).infotext(p, 0))
  807. p.color_corrections = None
  808. index_of_first_image = 0
  809. unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple
  810. if (opts.return_grid or opts.grid_save) and not p.do_not_save_grid and not unwanted_grid_because_of_img_count:
  811. grid = images.image_grid(output_images, p.batch_size)
  812. if opts.return_grid:
  813. text = infotext(use_main_prompt=True)
  814. infotexts.insert(0, text)
  815. if opts.enable_pnginfo:
  816. grid.info["parameters"] = text
  817. output_images.insert(0, grid)
  818. index_of_first_image = 1
  819. if opts.grid_save:
  820. images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(use_main_prompt=True), short_filename=not opts.grid_extended_filename, p=p, grid=True)
  821. if not p.disable_extra_networks and p.extra_network_data:
  822. extra_networks.deactivate(p, p.extra_network_data)
  823. devices.torch_gc()
  824. res = Processed(
  825. p,
  826. images_list=output_images,
  827. seed=p.all_seeds[0],
  828. info=infotexts[0],
  829. subseed=p.all_subseeds[0],
  830. index_of_first_image=index_of_first_image,
  831. infotexts=infotexts,
  832. )
  833. if p.scripts is not None:
  834. p.scripts.postprocess(p, res)
  835. return res
  836. def old_hires_fix_first_pass_dimensions(width, height):
  837. """old algorithm for auto-calculating first pass size"""
  838. desired_pixel_count = 512 * 512
  839. actual_pixel_count = width * height
  840. scale = math.sqrt(desired_pixel_count / actual_pixel_count)
  841. width = math.ceil(scale * width / 64) * 64
  842. height = math.ceil(scale * height / 64) * 64
  843. return width, height
  844. @dataclass(repr=False)
  845. class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
  846. enable_hr: bool = False
  847. denoising_strength: float = 0.75
  848. firstphase_width: int = 0
  849. firstphase_height: int = 0
  850. hr_scale: float = 2.0
  851. hr_upscaler: str = None
  852. hr_second_pass_steps: int = 0
  853. hr_resize_x: int = 0
  854. hr_resize_y: int = 0
  855. hr_checkpoint_name: str = None
  856. hr_sampler_name: str = None
  857. hr_prompt: str = ''
  858. hr_negative_prompt: str = ''
  859. force_task_id: str = None
  860. cached_hr_uc = [None, None]
  861. cached_hr_c = [None, None]
  862. hr_checkpoint_info: dict = field(default=None, init=False)
  863. hr_upscale_to_x: int = field(default=0, init=False)
  864. hr_upscale_to_y: int = field(default=0, init=False)
  865. truncate_x: int = field(default=0, init=False)
  866. truncate_y: int = field(default=0, init=False)
  867. applied_old_hires_behavior_to: tuple = field(default=None, init=False)
  868. latent_scale_mode: dict = field(default=None, init=False)
  869. hr_c: tuple | None = field(default=None, init=False)
  870. hr_uc: tuple | None = field(default=None, init=False)
  871. all_hr_prompts: list = field(default=None, init=False)
  872. all_hr_negative_prompts: list = field(default=None, init=False)
  873. hr_prompts: list = field(default=None, init=False)
  874. hr_negative_prompts: list = field(default=None, init=False)
  875. hr_extra_network_data: list = field(default=None, init=False)
  876. def __post_init__(self):
  877. super().__post_init__()
  878. if self.firstphase_width != 0 or self.firstphase_height != 0:
  879. self.hr_upscale_to_x = self.width
  880. self.hr_upscale_to_y = self.height
  881. self.width = self.firstphase_width
  882. self.height = self.firstphase_height
  883. self.cached_hr_uc = StableDiffusionProcessingTxt2Img.cached_hr_uc
  884. self.cached_hr_c = StableDiffusionProcessingTxt2Img.cached_hr_c
  885. def calculate_target_resolution(self):
  886. if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height):
  887. self.hr_resize_x = self.width
  888. self.hr_resize_y = self.height
  889. self.hr_upscale_to_x = self.width
  890. self.hr_upscale_to_y = self.height
  891. self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height)
  892. self.applied_old_hires_behavior_to = (self.width, self.height)
  893. if self.hr_resize_x == 0 and self.hr_resize_y == 0:
  894. self.extra_generation_params["Hires upscale"] = self.hr_scale
  895. self.hr_upscale_to_x = int(self.width * self.hr_scale)
  896. self.hr_upscale_to_y = int(self.height * self.hr_scale)
  897. else:
  898. self.extra_generation_params["Hires resize"] = f"{self.hr_resize_x}x{self.hr_resize_y}"
  899. if self.hr_resize_y == 0:
  900. self.hr_upscale_to_x = self.hr_resize_x
  901. self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
  902. elif self.hr_resize_x == 0:
  903. self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
  904. self.hr_upscale_to_y = self.hr_resize_y
  905. else:
  906. target_w = self.hr_resize_x
  907. target_h = self.hr_resize_y
  908. src_ratio = self.width / self.height
  909. dst_ratio = self.hr_resize_x / self.hr_resize_y
  910. if src_ratio < dst_ratio:
  911. self.hr_upscale_to_x = self.hr_resize_x
  912. self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
  913. else:
  914. self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
  915. self.hr_upscale_to_y = self.hr_resize_y
  916. self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f
  917. self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f
  918. def init(self, all_prompts, all_seeds, all_subseeds):
  919. if self.enable_hr:
  920. self.extra_generation_params["Denoising strength"] = self.denoising_strength
  921. if self.hr_checkpoint_name and self.hr_checkpoint_name != 'Use same checkpoint':
  922. self.hr_checkpoint_info = sd_models.get_closet_checkpoint_match(self.hr_checkpoint_name)
  923. if self.hr_checkpoint_info is None:
  924. raise Exception(f'Could not find checkpoint with name {self.hr_checkpoint_name}')
  925. self.extra_generation_params["Hires checkpoint"] = self.hr_checkpoint_info.short_title
  926. if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
  927. self.extra_generation_params["Hires sampler"] = self.hr_sampler_name
  928. if tuple(self.hr_prompt) != tuple(self.prompt):
  929. self.extra_generation_params["Hires prompt"] = self.hr_prompt
  930. if tuple(self.hr_negative_prompt) != tuple(self.negative_prompt):
  931. self.extra_generation_params["Hires negative prompt"] = self.hr_negative_prompt
  932. self.latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
  933. if self.enable_hr and self.latent_scale_mode is None:
  934. if not any(x.name == self.hr_upscaler for x in shared.sd_upscalers):
  935. raise Exception(f"could not find upscaler named {self.hr_upscaler}")
  936. self.calculate_target_resolution()
  937. if not state.processing_has_refined_job_count:
  938. if state.job_count == -1:
  939. state.job_count = self.n_iter
  940. if getattr(self, 'txt2img_upscale', False):
  941. total_steps = (self.hr_second_pass_steps or self.steps) * state.job_count
  942. else:
  943. total_steps = (self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count
  944. shared.total_tqdm.updateTotal(total_steps)
  945. state.job_count = state.job_count * 2
  946. state.processing_has_refined_job_count = True
  947. if self.hr_second_pass_steps:
  948. self.extra_generation_params["Hires steps"] = self.hr_second_pass_steps
  949. if self.hr_upscaler is not None:
  950. self.extra_generation_params["Hires upscaler"] = self.hr_upscaler
  951. def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
  952. self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
  953. if self.firstpass_image is not None and self.enable_hr:
  954. # here we don't need to generate image, we just take self.firstpass_image and prepare it for hires fix
  955. if self.latent_scale_mode is None:
  956. image = np.array(self.firstpass_image).astype(np.float32) / 255.0 * 2.0 - 1.0
  957. image = np.moveaxis(image, 2, 0)
  958. samples = None
  959. decoded_samples = torch.asarray(np.expand_dims(image, 0))
  960. else:
  961. image = np.array(self.firstpass_image).astype(np.float32) / 255.0
  962. image = np.moveaxis(image, 2, 0)
  963. image = torch.from_numpy(np.expand_dims(image, axis=0))
  964. image = image.to(shared.device, dtype=devices.dtype_vae)
  965. if opts.sd_vae_encode_method != 'Full':
  966. self.extra_generation_params['VAE Encoder'] = opts.sd_vae_encode_method
  967. samples = images_tensor_to_samples(image, approximation_indexes.get(opts.sd_vae_encode_method), self.sd_model)
  968. decoded_samples = None
  969. devices.torch_gc()
  970. else:
  971. # here we generate an image normally
  972. x = self.rng.next()
  973. samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
  974. del x
  975. if not self.enable_hr:
  976. return samples
  977. devices.torch_gc()
  978. if self.latent_scale_mode is None:
  979. decoded_samples = torch.stack(decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)).to(dtype=torch.float32)
  980. else:
  981. decoded_samples = None
  982. with sd_models.SkipWritingToConfig():
  983. sd_models.reload_model_weights(info=self.hr_checkpoint_info)
  984. return self.sample_hr_pass(samples, decoded_samples, seeds, subseeds, subseed_strength, prompts)
  985. def sample_hr_pass(self, samples, decoded_samples, seeds, subseeds, subseed_strength, prompts):
  986. if shared.state.interrupted:
  987. return samples
  988. self.is_hr_pass = True
  989. target_width = self.hr_upscale_to_x
  990. target_height = self.hr_upscale_to_y
  991. def save_intermediate(image, index):
  992. """saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images"""
  993. if not self.save_samples() or not opts.save_images_before_highres_fix:
  994. return
  995. if not isinstance(image, Image.Image):
  996. image = sd_samplers.sample_to_image(image, index, approximation=0)
  997. info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index)
  998. images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, p=self, suffix="-before-highres-fix")
  999. img2img_sampler_name = self.hr_sampler_name or self.sampler_name
  1000. self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model)
  1001. if self.latent_scale_mode is not None:
  1002. for i in range(samples.shape[0]):
  1003. save_intermediate(samples, i)
  1004. samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=self.latent_scale_mode["mode"], antialias=self.latent_scale_mode["antialias"])
  1005. # Avoid making the inpainting conditioning unless necessary as
  1006. # this does need some extra compute to decode / encode the image again.
  1007. if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0:
  1008. image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples)
  1009. else:
  1010. image_conditioning = self.txt2img_image_conditioning(samples)
  1011. else:
  1012. lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
  1013. batch_images = []
  1014. for i, x_sample in enumerate(lowres_samples):
  1015. x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
  1016. x_sample = x_sample.astype(np.uint8)
  1017. image = Image.fromarray(x_sample)
  1018. save_intermediate(image, i)
  1019. image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler)
  1020. image = np.array(image).astype(np.float32) / 255.0
  1021. image = np.moveaxis(image, 2, 0)
  1022. batch_images.append(image)
  1023. decoded_samples = torch.from_numpy(np.array(batch_images))
  1024. decoded_samples = decoded_samples.to(shared.device, dtype=devices.dtype_vae)
  1025. if opts.sd_vae_encode_method != 'Full':
  1026. self.extra_generation_params['VAE Encoder'] = opts.sd_vae_encode_method
  1027. samples = images_tensor_to_samples(decoded_samples, approximation_indexes.get(opts.sd_vae_encode_method))
  1028. image_conditioning = self.img2img_image_conditioning(decoded_samples, samples)
  1029. shared.state.nextjob()
  1030. samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]
  1031. self.rng = rng.ImageRNG(samples.shape[1:], self.seeds, subseeds=self.subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w)
  1032. noise = self.rng.next()
  1033. # GC now before running the next img2img to prevent running out of memory
  1034. devices.torch_gc()
  1035. if not self.disable_extra_networks:
  1036. with devices.autocast():
  1037. extra_networks.activate(self, self.hr_extra_network_data)
  1038. with devices.autocast():
  1039. self.calculate_hr_conds()
  1040. sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True))
  1041. if self.scripts is not None:
  1042. self.scripts.before_hr(self)
  1043. samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
  1044. sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio())
  1045. self.sampler = None
  1046. devices.torch_gc()
  1047. decoded_samples = decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)
  1048. self.is_hr_pass = False
  1049. return decoded_samples
  1050. def close(self):
  1051. super().close()
  1052. self.hr_c = None
  1053. self.hr_uc = None
  1054. if not opts.persistent_cond_cache:
  1055. StableDiffusionProcessingTxt2Img.cached_hr_uc = [None, None]
  1056. StableDiffusionProcessingTxt2Img.cached_hr_c = [None, None]
  1057. def setup_prompts(self):
  1058. super().setup_prompts()
  1059. if not self.enable_hr:
  1060. return
  1061. if self.hr_prompt == '':
  1062. self.hr_prompt = self.prompt
  1063. if self.hr_negative_prompt == '':
  1064. self.hr_negative_prompt = self.negative_prompt
  1065. if isinstance(self.hr_prompt, list):
  1066. self.all_hr_prompts = self.hr_prompt
  1067. else:
  1068. self.all_hr_prompts = self.batch_size * self.n_iter * [self.hr_prompt]
  1069. if isinstance(self.hr_negative_prompt, list):
  1070. self.all_hr_negative_prompts = self.hr_negative_prompt
  1071. else:
  1072. self.all_hr_negative_prompts = self.batch_size * self.n_iter * [self.hr_negative_prompt]
  1073. self.all_hr_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_hr_prompts]
  1074. self.all_hr_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_hr_negative_prompts]
  1075. def calculate_hr_conds(self):
  1076. if self.hr_c is not None:
  1077. return
  1078. hr_prompts = prompt_parser.SdConditioning(self.hr_prompts, width=self.hr_upscale_to_x, height=self.hr_upscale_to_y)
  1079. hr_negative_prompts = prompt_parser.SdConditioning(self.hr_negative_prompts, width=self.hr_upscale_to_x, height=self.hr_upscale_to_y, is_negative_prompt=True)
  1080. sampler_config = sd_samplers.find_sampler_config(self.hr_sampler_name or self.sampler_name)
  1081. steps = self.hr_second_pass_steps or self.steps
  1082. total_steps = sampler_config.total_steps(steps) if sampler_config else steps
  1083. self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, hr_negative_prompts, self.firstpass_steps, [self.cached_hr_uc, self.cached_uc], self.hr_extra_network_data, total_steps)
  1084. self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, hr_prompts, self.firstpass_steps, [self.cached_hr_c, self.cached_c], self.hr_extra_network_data, total_steps)
  1085. def setup_conds(self):
  1086. if self.is_hr_pass:
  1087. # if we are in hr pass right now, the call is being made from the refiner, and we don't need to setup firstpass cons or switch model
  1088. self.hr_c = None
  1089. self.calculate_hr_conds()
  1090. return
  1091. super().setup_conds()
  1092. self.hr_uc = None
  1093. self.hr_c = None
  1094. if self.enable_hr and self.hr_checkpoint_info is None:
  1095. if shared.opts.hires_fix_use_firstpass_conds:
  1096. self.calculate_hr_conds()
  1097. elif lowvram.is_enabled(shared.sd_model) and shared.sd_model.sd_checkpoint_info == sd_models.select_checkpoint(): # if in lowvram mode, we need to calculate conds right away, before the cond NN is unloaded
  1098. with devices.autocast():
  1099. extra_networks.activate(self, self.hr_extra_network_data)
  1100. self.calculate_hr_conds()
  1101. with devices.autocast():
  1102. extra_networks.activate(self, self.extra_network_data)
  1103. def get_conds(self):
  1104. if self.is_hr_pass:
  1105. return self.hr_c, self.hr_uc
  1106. return super().get_conds()
  1107. def parse_extra_network_prompts(self):
  1108. res = super().parse_extra_network_prompts()
  1109. if self.enable_hr:
  1110. self.hr_prompts = self.all_hr_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
  1111. self.hr_negative_prompts = self.all_hr_negative_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
  1112. self.hr_prompts, self.hr_extra_network_data = extra_networks.parse_prompts(self.hr_prompts)
  1113. return res
  1114. @dataclass(repr=False)
  1115. class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
  1116. init_images: list = None
  1117. resize_mode: int = 0
  1118. denoising_strength: float = 0.75
  1119. image_cfg_scale: float = None
  1120. mask: Any = None
  1121. mask_blur_x: int = 4
  1122. mask_blur_y: int = 4
  1123. mask_blur: int = None
  1124. mask_round: bool = True
  1125. inpainting_fill: int = 0
  1126. inpaint_full_res: bool = True
  1127. inpaint_full_res_padding: int = 0
  1128. inpainting_mask_invert: int = 0
  1129. initial_noise_multiplier: float = None
  1130. latent_mask: Image = None
  1131. force_task_id: str = None
  1132. image_mask: Any = field(default=None, init=False)
  1133. nmask: torch.Tensor = field(default=None, init=False)
  1134. image_conditioning: torch.Tensor = field(default=None, init=False)
  1135. init_img_hash: str = field(default=None, init=False)
  1136. mask_for_overlay: Image = field(default=None, init=False)
  1137. init_latent: torch.Tensor = field(default=None, init=False)
  1138. def __post_init__(self):
  1139. super().__post_init__()
  1140. self.image_mask = self.mask
  1141. self.mask = None
  1142. self.initial_noise_multiplier = opts.initial_noise_multiplier if self.initial_noise_multiplier is None else self.initial_noise_multiplier
  1143. @property
  1144. def mask_blur(self):
  1145. if self.mask_blur_x == self.mask_blur_y:
  1146. return self.mask_blur_x
  1147. return None
  1148. @mask_blur.setter
  1149. def mask_blur(self, value):
  1150. if isinstance(value, int):
  1151. self.mask_blur_x = value
  1152. self.mask_blur_y = value
  1153. def init(self, all_prompts, all_seeds, all_subseeds):
  1154. self.extra_generation_params["Denoising strength"] = self.denoising_strength
  1155. self.image_cfg_scale: float = self.image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None
  1156. self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
  1157. crop_region = None
  1158. image_mask = self.image_mask
  1159. if image_mask is not None:
  1160. # image_mask is passed in as RGBA by Gradio to support alpha masks,
  1161. # but we still want to support binary masks.
  1162. image_mask = create_binary_mask(image_mask, round=self.mask_round)
  1163. if self.inpainting_mask_invert:
  1164. image_mask = ImageOps.invert(image_mask)
  1165. self.extra_generation_params["Mask mode"] = "Inpaint not masked"
  1166. if self.mask_blur_x > 0:
  1167. np_mask = np.array(image_mask)
  1168. kernel_size = 2 * int(2.5 * self.mask_blur_x + 0.5) + 1
  1169. np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), self.mask_blur_x)
  1170. image_mask = Image.fromarray(np_mask)
  1171. if self.mask_blur_y > 0:
  1172. np_mask = np.array(image_mask)
  1173. kernel_size = 2 * int(2.5 * self.mask_blur_y + 0.5) + 1
  1174. np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), self.mask_blur_y)
  1175. image_mask = Image.fromarray(np_mask)
  1176. if self.mask_blur_x > 0 or self.mask_blur_y > 0:
  1177. self.extra_generation_params["Mask blur"] = self.mask_blur
  1178. if self.inpaint_full_res:
  1179. self.mask_for_overlay = image_mask
  1180. mask = image_mask.convert('L')
  1181. crop_region = masking.get_crop_region(mask, self.inpaint_full_res_padding)
  1182. crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
  1183. x1, y1, x2, y2 = crop_region
  1184. mask = mask.crop(crop_region)
  1185. image_mask = images.resize_image(2, mask, self.width, self.height)
  1186. self.paste_to = (x1, y1, x2-x1, y2-y1)
  1187. self.extra_generation_params["Inpaint area"] = "Only masked"
  1188. self.extra_generation_params["Masked area padding"] = self.inpaint_full_res_padding
  1189. else:
  1190. image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
  1191. np_mask = np.array(image_mask)
  1192. np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
  1193. self.mask_for_overlay = Image.fromarray(np_mask)
  1194. self.overlay_images = []
  1195. latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
  1196. add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
  1197. if add_color_corrections:
  1198. self.color_corrections = []
  1199. imgs = []
  1200. for img in self.init_images:
  1201. # Save init image
  1202. if opts.save_init_img:
  1203. self.init_img_hash = hashlib.md5(img.tobytes()).hexdigest()
  1204. images.save_image(img, path=opts.outdir_init_images, basename=None, forced_filename=self.init_img_hash, save_to_dirs=False, existing_info=img.info)
  1205. image = images.flatten(img, opts.img2img_background_color)
  1206. if crop_region is None and self.resize_mode != 3:
  1207. image = images.resize_image(self.resize_mode, image, self.width, self.height)
  1208. if image_mask is not None:
  1209. image_masked = Image.new('RGBa', (image.width, image.height))
  1210. image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
  1211. self.overlay_images.append(image_masked.convert('RGBA'))
  1212. # crop_region is not None if we are doing inpaint full res
  1213. if crop_region is not None:
  1214. image = image.crop(crop_region)
  1215. image = images.resize_image(2, image, self.width, self.height)
  1216. if image_mask is not None:
  1217. if self.inpainting_fill != 1:
  1218. image = masking.fill(image, latent_mask)
  1219. if self.inpainting_fill == 0:
  1220. self.extra_generation_params["Masked content"] = 'fill'
  1221. if add_color_corrections:
  1222. self.color_corrections.append(setup_color_correction(image))
  1223. image = np.array(image).astype(np.float32) / 255.0
  1224. image = np.moveaxis(image, 2, 0)
  1225. imgs.append(image)
  1226. if len(imgs) == 1:
  1227. batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
  1228. if self.overlay_images is not None:
  1229. self.overlay_images = self.overlay_images * self.batch_size
  1230. if self.color_corrections is not None and len(self.color_corrections) == 1:
  1231. self.color_corrections = self.color_corrections * self.batch_size
  1232. elif len(imgs) <= self.batch_size:
  1233. self.batch_size = len(imgs)
  1234. batch_images = np.array(imgs)
  1235. else:
  1236. raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")
  1237. image = torch.from_numpy(batch_images)
  1238. image = image.to(shared.device, dtype=devices.dtype_vae)
  1239. if opts.sd_vae_encode_method != 'Full':
  1240. self.extra_generation_params['VAE Encoder'] = opts.sd_vae_encode_method
  1241. self.init_latent = images_tensor_to_samples(image, approximation_indexes.get(opts.sd_vae_encode_method), self.sd_model)
  1242. devices.torch_gc()
  1243. if self.resize_mode == 3:
  1244. self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
  1245. if image_mask is not None:
  1246. init_mask = latent_mask
  1247. latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
  1248. latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
  1249. latmask = latmask[0]
  1250. if self.mask_round:
  1251. latmask = np.around(latmask)
  1252. latmask = np.tile(latmask[None], (4, 1, 1))
  1253. self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
  1254. self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)
  1255. # this needs to be fixed to be done in sample() using actual seeds for batches
  1256. if self.inpainting_fill == 2:
  1257. self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
  1258. self.extra_generation_params["Masked content"] = 'latent noise'
  1259. elif self.inpainting_fill == 3:
  1260. self.init_latent = self.init_latent * self.mask
  1261. self.extra_generation_params["Masked content"] = 'latent nothing'
  1262. self.image_conditioning = self.img2img_image_conditioning(image * 2 - 1, self.init_latent, image_mask, self.mask_round)
  1263. def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
  1264. x = self.rng.next()
  1265. if self.initial_noise_multiplier != 1.0:
  1266. self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier
  1267. x *= self.initial_noise_multiplier
  1268. samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
  1269. if self.mask is not None:
  1270. blended_samples = samples * self.nmask + self.init_latent * self.mask
  1271. if self.scripts is not None:
  1272. mba = scripts.MaskBlendArgs(samples, self.nmask, self.init_latent, self.mask, blended_samples)
  1273. self.scripts.on_mask_blend(self, mba)
  1274. blended_samples = mba.blended_latent
  1275. samples = blended_samples
  1276. del x
  1277. devices.torch_gc()
  1278. return samples
  1279. def get_token_merging_ratio(self, for_hr=False):
  1280. return self.token_merging_ratio or ("token_merging_ratio" in self.override_settings and opts.token_merging_ratio) or opts.token_merging_ratio_img2img or opts.token_merging_ratio