1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792 |
- from __future__ import annotations
- import json
- import logging
- import math
- import os
- import sys
- import hashlib
- from dataclasses import dataclass, field
- import torch
- import numpy as np
- from PIL import Image, ImageOps
- import random
- import cv2
- from skimage import exposure
- from typing import Any
- import modules.sd_hijack
- from modules import devices, prompt_parser, masking, sd_samplers, lowvram, infotext_utils, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors, rng, profiling
- from modules.rng import slerp # noqa: F401
- from modules.sd_hijack import model_hijack
- from modules.sd_samplers_common import images_tensor_to_samples, decode_first_stage, approximation_indexes
- from modules.shared import opts, cmd_opts, state
- import modules.shared as shared
- import modules.paths as paths
- import modules.face_restoration
- import modules.images as images
- import modules.styles
- import modules.sd_models as sd_models
- import modules.sd_vae as sd_vae
- from ldm.data.util import AddMiDaS
- from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
- from einops import repeat, rearrange
- from blendmodes.blend import blendLayers, BlendType
- # some of those options should not be changed at all because they would break the model, so I removed them from options.
- opt_C = 4
- opt_f = 8
- def setup_color_correction(image):
- logging.info("Calibrating color correction.")
- correction_target = cv2.cvtColor(np.asarray(image.copy()), cv2.COLOR_RGB2LAB)
- return correction_target
- def apply_color_correction(correction, original_image):
- logging.info("Applying color correction.")
- image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
- cv2.cvtColor(
- np.asarray(original_image),
- cv2.COLOR_RGB2LAB
- ),
- correction,
- channel_axis=2
- ), cv2.COLOR_LAB2RGB).astype("uint8"))
- image = blendLayers(image, original_image, BlendType.LUMINOSITY)
- return image.convert('RGB')
- def uncrop(image, dest_size, paste_loc):
- x, y, w, h = paste_loc
- base_image = Image.new('RGBA', dest_size)
- image = images.resize_image(1, image, w, h)
- base_image.paste(image, (x, y))
- image = base_image
- return image
- def apply_overlay(image, paste_loc, overlay):
- if overlay is None:
- return image, image.copy()
- if paste_loc is not None:
- image = uncrop(image, (overlay.width, overlay.height), paste_loc)
- original_denoised_image = image.copy()
- image = image.convert('RGBA')
- image.alpha_composite(overlay)
- image = image.convert('RGB')
- return image, original_denoised_image
- def create_binary_mask(image, round=True):
- if image.mode == 'RGBA' and image.getextrema()[-1] != (255, 255):
- if round:
- image = image.split()[-1].convert("L").point(lambda x: 255 if x > 128 else 0)
- else:
- image = image.split()[-1].convert("L")
- else:
- image = image.convert('L')
- return image
- def txt2img_image_conditioning(sd_model, x, width, height):
- if sd_model.model.conditioning_key in {'hybrid', 'concat'}: # Inpainting models
- # The "masked-image" in this case will just be all 0.5 since the entire image is masked.
- image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5
- image_conditioning = images_tensor_to_samples(image_conditioning, approximation_indexes.get(opts.sd_vae_encode_method))
- # Add the fake full 1s mask to the first dimension.
- image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
- image_conditioning = image_conditioning.to(x.dtype)
- return image_conditioning
- elif sd_model.model.conditioning_key == "crossattn-adm": # UnCLIP models
- return x.new_zeros(x.shape[0], 2*sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device)
- else:
- if sd_model.is_sdxl_inpaint:
- # The "masked-image" in this case will just be all 0.5 since the entire image is masked.
- image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5
- image_conditioning = images_tensor_to_samples(image_conditioning,
- approximation_indexes.get(opts.sd_vae_encode_method))
- # Add the fake full 1s mask to the first dimension.
- image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
- image_conditioning = image_conditioning.to(x.dtype)
- return image_conditioning
- # Dummy zero conditioning if we're not using inpainting or unclip models.
- # Still takes up a bit of memory, but no encoder call.
- # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
- return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
- @dataclass(repr=False)
- class StableDiffusionProcessing:
- sd_model: object = None
- outpath_samples: str = None
- outpath_grids: str = None
- prompt: str = ""
- prompt_for_display: str = None
- negative_prompt: str = ""
- styles: list[str] = None
- seed: int = -1
- subseed: int = -1
- subseed_strength: float = 0
- seed_resize_from_h: int = -1
- seed_resize_from_w: int = -1
- seed_enable_extras: bool = True
- sampler_name: str = None
- scheduler: str = None
- batch_size: int = 1
- n_iter: int = 1
- steps: int = 50
- cfg_scale: float = 7.0
- width: int = 512
- height: int = 512
- restore_faces: bool = None
- tiling: bool = None
- do_not_save_samples: bool = False
- do_not_save_grid: bool = False
- extra_generation_params: dict[str, Any] = None
- overlay_images: list = None
- eta: float = None
- do_not_reload_embeddings: bool = False
- denoising_strength: float = None
- ddim_discretize: str = None
- s_min_uncond: float = None
- s_churn: float = None
- s_tmax: float = None
- s_tmin: float = None
- s_noise: float = None
- override_settings: dict[str, Any] = None
- override_settings_restore_afterwards: bool = True
- sampler_index: int = None
- refiner_checkpoint: str = None
- refiner_switch_at: float = None
- token_merging_ratio = 0
- token_merging_ratio_hr = 0
- disable_extra_networks: bool = False
- firstpass_image: Image = None
- scripts_value: scripts.ScriptRunner = field(default=None, init=False)
- script_args_value: list = field(default=None, init=False)
- scripts_setup_complete: bool = field(default=False, init=False)
- cached_uc = [None, None]
- cached_c = [None, None]
- comments: dict = None
- sampler: sd_samplers_common.Sampler | None = field(default=None, init=False)
- is_using_inpainting_conditioning: bool = field(default=False, init=False)
- paste_to: tuple | None = field(default=None, init=False)
- is_hr_pass: bool = field(default=False, init=False)
- c: tuple = field(default=None, init=False)
- uc: tuple = field(default=None, init=False)
- rng: rng.ImageRNG | None = field(default=None, init=False)
- step_multiplier: int = field(default=1, init=False)
- color_corrections: list = field(default=None, init=False)
- all_prompts: list = field(default=None, init=False)
- all_negative_prompts: list = field(default=None, init=False)
- all_seeds: list = field(default=None, init=False)
- all_subseeds: list = field(default=None, init=False)
- iteration: int = field(default=0, init=False)
- main_prompt: str = field(default=None, init=False)
- main_negative_prompt: str = field(default=None, init=False)
- prompts: list = field(default=None, init=False)
- negative_prompts: list = field(default=None, init=False)
- seeds: list = field(default=None, init=False)
- subseeds: list = field(default=None, init=False)
- extra_network_data: dict = field(default=None, init=False)
- user: str = field(default=None, init=False)
- sd_model_name: str = field(default=None, init=False)
- sd_model_hash: str = field(default=None, init=False)
- sd_vae_name: str = field(default=None, init=False)
- sd_vae_hash: str = field(default=None, init=False)
- is_api: bool = field(default=False, init=False)
- def __post_init__(self):
- if self.sampler_index is not None:
- print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
- self.comments = {}
- if self.styles is None:
- self.styles = []
- self.sampler_noise_scheduler_override = None
- self.extra_generation_params = self.extra_generation_params or {}
- self.override_settings = self.override_settings or {}
- self.script_args = self.script_args or {}
- self.refiner_checkpoint_info = None
- if not self.seed_enable_extras:
- self.subseed = -1
- self.subseed_strength = 0
- self.seed_resize_from_h = 0
- self.seed_resize_from_w = 0
- self.cached_uc = StableDiffusionProcessing.cached_uc
- self.cached_c = StableDiffusionProcessing.cached_c
- def fill_fields_from_opts(self):
- self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond
- self.s_churn = self.s_churn if self.s_churn is not None else opts.s_churn
- self.s_tmin = self.s_tmin if self.s_tmin is not None else opts.s_tmin
- self.s_tmax = (self.s_tmax if self.s_tmax is not None else opts.s_tmax) or float('inf')
- self.s_noise = self.s_noise if self.s_noise is not None else opts.s_noise
- @property
- def sd_model(self):
- return shared.sd_model
- @sd_model.setter
- def sd_model(self, value):
- pass
- @property
- def scripts(self):
- return self.scripts_value
- @scripts.setter
- def scripts(self, value):
- self.scripts_value = value
- if self.scripts_value and self.script_args_value and not self.scripts_setup_complete:
- self.setup_scripts()
- @property
- def script_args(self):
- return self.script_args_value
- @script_args.setter
- def script_args(self, value):
- self.script_args_value = value
- if self.scripts_value and self.script_args_value and not self.scripts_setup_complete:
- self.setup_scripts()
- def setup_scripts(self):
- self.scripts_setup_complete = True
- self.scripts.setup_scrips(self, is_ui=not self.is_api)
- def comment(self, text):
- self.comments[text] = 1
- def txt2img_image_conditioning(self, x, width=None, height=None):
- self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'}
- return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height)
- def depth2img_image_conditioning(self, source_image):
- # Use the AddMiDaS helper to Format our source image to suit the MiDaS model
- transformer = AddMiDaS(model_type="dpt_hybrid")
- transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")})
- midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device)
- midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size)
- conditioning_image = images_tensor_to_samples(source_image*0.5+0.5, approximation_indexes.get(opts.sd_vae_encode_method))
- conditioning = torch.nn.functional.interpolate(
- self.sd_model.depth_model(midas_in),
- size=conditioning_image.shape[2:],
- mode="bicubic",
- align_corners=False,
- )
- (depth_min, depth_max) = torch.aminmax(conditioning)
- conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1.
- return conditioning
- def edit_image_conditioning(self, source_image):
- conditioning_image = shared.sd_model.encode_first_stage(source_image).mode()
- return conditioning_image
- def unclip_image_conditioning(self, source_image):
- c_adm = self.sd_model.embedder(source_image)
- if self.sd_model.noise_augmentor is not None:
- noise_level = 0 # TODO: Allow other noise levels?
- c_adm, noise_level_emb = self.sd_model.noise_augmentor(c_adm, noise_level=repeat(torch.tensor([noise_level]).to(c_adm.device), '1 -> b', b=c_adm.shape[0]))
- c_adm = torch.cat((c_adm, noise_level_emb), 1)
- return c_adm
- def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None, round_image_mask=True):
- self.is_using_inpainting_conditioning = True
- # Handle the different mask inputs
- if image_mask is not None:
- if torch.is_tensor(image_mask):
- conditioning_mask = image_mask
- else:
- conditioning_mask = np.array(image_mask.convert("L"))
- conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
- conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
- if round_image_mask:
- # Caller is requesting a discretized mask as input, so we round to either 1.0 or 0.0
- conditioning_mask = torch.round(conditioning_mask)
- else:
- conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:])
- # Create another latent image, this time with a masked version of the original input.
- # Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
- conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype)
- conditioning_image = torch.lerp(
- source_image,
- source_image * (1.0 - conditioning_mask),
- getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
- )
- # Encode the new masked image using first stage of network.
- conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
- # Create the concatenated conditioning tensor to be fed to `c_concat`
- conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
- conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
- image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
- image_conditioning = image_conditioning.to(shared.device).type(self.sd_model.dtype)
- return image_conditioning
- def img2img_image_conditioning(self, source_image, latent_image, image_mask=None, round_image_mask=True):
- source_image = devices.cond_cast_float(source_image)
- # HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
- # identify itself with a field common to all models. The conditioning_key is also hybrid.
- if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
- return self.depth2img_image_conditioning(source_image)
- if self.sd_model.cond_stage_key == "edit":
- return self.edit_image_conditioning(source_image)
- if self.sampler.conditioning_key in {'hybrid', 'concat'}:
- return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask, round_image_mask=round_image_mask)
- if self.sampler.conditioning_key == "crossattn-adm":
- return self.unclip_image_conditioning(source_image)
- if self.sampler.model_wrap.inner_model.is_sdxl_inpaint:
- return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
- # Dummy zero conditioning if we're not using inpainting or depth model.
- return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
- def init(self, all_prompts, all_seeds, all_subseeds):
- pass
- def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
- raise NotImplementedError()
- def close(self):
- self.sampler = None
- self.c = None
- self.uc = None
- if not opts.persistent_cond_cache:
- StableDiffusionProcessing.cached_c = [None, None]
- StableDiffusionProcessing.cached_uc = [None, None]
- def get_token_merging_ratio(self, for_hr=False):
- if for_hr:
- return self.token_merging_ratio_hr or opts.token_merging_ratio_hr or self.token_merging_ratio or opts.token_merging_ratio
- return self.token_merging_ratio or opts.token_merging_ratio
- def setup_prompts(self):
- if isinstance(self.prompt,list):
- self.all_prompts = self.prompt
- elif isinstance(self.negative_prompt, list):
- self.all_prompts = [self.prompt] * len(self.negative_prompt)
- else:
- self.all_prompts = self.batch_size * self.n_iter * [self.prompt]
- if isinstance(self.negative_prompt, list):
- self.all_negative_prompts = self.negative_prompt
- else:
- self.all_negative_prompts = [self.negative_prompt] * len(self.all_prompts)
- if len(self.all_prompts) != len(self.all_negative_prompts):
- raise RuntimeError(f"Received a different number of prompts ({len(self.all_prompts)}) and negative prompts ({len(self.all_negative_prompts)})")
- self.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_prompts]
- self.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_negative_prompts]
- self.main_prompt = self.all_prompts[0]
- self.main_negative_prompt = self.all_negative_prompts[0]
- def cached_params(self, required_prompts, steps, extra_network_data, hires_steps=None, use_old_scheduling=False):
- """Returns parameters that invalidate the cond cache if changed"""
- return (
- required_prompts,
- steps,
- hires_steps,
- use_old_scheduling,
- opts.CLIP_stop_at_last_layers,
- shared.sd_model.sd_checkpoint_info,
- extra_network_data,
- opts.sdxl_crop_left,
- opts.sdxl_crop_top,
- self.width,
- self.height,
- opts.fp8_storage,
- opts.cache_fp16_weight,
- opts.emphasis,
- )
- def get_conds_with_caching(self, function, required_prompts, steps, caches, extra_network_data, hires_steps=None):
- """
- Returns the result of calling function(shared.sd_model, required_prompts, steps)
- using a cache to store the result if the same arguments have been used before.
- cache is an array containing two elements. The first element is a tuple
- representing the previously used arguments, or None if no arguments
- have been used before. The second element is where the previously
- computed result is stored.
- caches is a list with items described above.
- """
- if shared.opts.use_old_scheduling:
- old_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(required_prompts, steps, hires_steps, False)
- new_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(required_prompts, steps, hires_steps, True)
- if old_schedules != new_schedules:
- self.extra_generation_params["Old prompt editing timelines"] = True
- cached_params = self.cached_params(required_prompts, steps, extra_network_data, hires_steps, shared.opts.use_old_scheduling)
- for cache in caches:
- if cache[0] is not None and cached_params == cache[0]:
- return cache[1]
- cache = caches[0]
- with devices.autocast():
- cache[1] = function(shared.sd_model, required_prompts, steps, hires_steps, shared.opts.use_old_scheduling)
- cache[0] = cached_params
- return cache[1]
- def setup_conds(self):
- prompts = prompt_parser.SdConditioning(self.prompts, width=self.width, height=self.height)
- negative_prompts = prompt_parser.SdConditioning(self.negative_prompts, width=self.width, height=self.height, is_negative_prompt=True)
- sampler_config = sd_samplers.find_sampler_config(self.sampler_name)
- total_steps = sampler_config.total_steps(self.steps) if sampler_config else self.steps
- self.step_multiplier = total_steps // self.steps
- self.firstpass_steps = total_steps
- self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, total_steps, [self.cached_uc], self.extra_network_data)
- self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, total_steps, [self.cached_c], self.extra_network_data)
- def get_conds(self):
- return self.c, self.uc
- def parse_extra_network_prompts(self):
- self.prompts, self.extra_network_data = extra_networks.parse_prompts(self.prompts)
- def save_samples(self) -> bool:
- """Returns whether generated images need to be written to disk"""
- return opts.samples_save and not self.do_not_save_samples and (opts.save_incomplete_images or not state.interrupted and not state.skipped)
- class Processed:
- def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
- self.images = images_list
- self.prompt = p.prompt
- self.negative_prompt = p.negative_prompt
- self.seed = seed
- self.subseed = subseed
- self.subseed_strength = p.subseed_strength
- self.info = info
- self.comments = "".join(f"{comment}\n" for comment in p.comments)
- self.width = p.width
- self.height = p.height
- self.sampler_name = p.sampler_name
- self.cfg_scale = p.cfg_scale
- self.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
- self.steps = p.steps
- self.batch_size = p.batch_size
- self.restore_faces = p.restore_faces
- self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None
- self.sd_model_name = p.sd_model_name
- self.sd_model_hash = p.sd_model_hash
- self.sd_vae_name = p.sd_vae_name
- self.sd_vae_hash = p.sd_vae_hash
- self.seed_resize_from_w = p.seed_resize_from_w
- self.seed_resize_from_h = p.seed_resize_from_h
- self.denoising_strength = getattr(p, 'denoising_strength', None)
- self.extra_generation_params = p.extra_generation_params
- self.index_of_first_image = index_of_first_image
- self.styles = p.styles
- self.job_timestamp = state.job_timestamp
- self.clip_skip = opts.CLIP_stop_at_last_layers
- self.token_merging_ratio = p.token_merging_ratio
- self.token_merging_ratio_hr = p.token_merging_ratio_hr
- self.eta = p.eta
- self.ddim_discretize = p.ddim_discretize
- self.s_churn = p.s_churn
- self.s_tmin = p.s_tmin
- self.s_tmax = p.s_tmax
- self.s_noise = p.s_noise
- self.s_min_uncond = p.s_min_uncond
- self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
- self.prompt = self.prompt if not isinstance(self.prompt, list) else self.prompt[0]
- self.negative_prompt = self.negative_prompt if not isinstance(self.negative_prompt, list) else self.negative_prompt[0]
- self.seed = int(self.seed if not isinstance(self.seed, list) else self.seed[0]) if self.seed is not None else -1
- self.subseed = int(self.subseed if not isinstance(self.subseed, list) else self.subseed[0]) if self.subseed is not None else -1
- self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning
- self.all_prompts = all_prompts or p.all_prompts or [self.prompt]
- self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
- self.all_seeds = all_seeds or p.all_seeds or [self.seed]
- self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
- self.infotexts = infotexts or [info] * len(images_list)
- self.version = program_version()
- def js(self):
- obj = {
- "prompt": self.all_prompts[0],
- "all_prompts": self.all_prompts,
- "negative_prompt": self.all_negative_prompts[0],
- "all_negative_prompts": self.all_negative_prompts,
- "seed": self.seed,
- "all_seeds": self.all_seeds,
- "subseed": self.subseed,
- "all_subseeds": self.all_subseeds,
- "subseed_strength": self.subseed_strength,
- "width": self.width,
- "height": self.height,
- "sampler_name": self.sampler_name,
- "cfg_scale": self.cfg_scale,
- "steps": self.steps,
- "batch_size": self.batch_size,
- "restore_faces": self.restore_faces,
- "face_restoration_model": self.face_restoration_model,
- "sd_model_name": self.sd_model_name,
- "sd_model_hash": self.sd_model_hash,
- "sd_vae_name": self.sd_vae_name,
- "sd_vae_hash": self.sd_vae_hash,
- "seed_resize_from_w": self.seed_resize_from_w,
- "seed_resize_from_h": self.seed_resize_from_h,
- "denoising_strength": self.denoising_strength,
- "extra_generation_params": self.extra_generation_params,
- "index_of_first_image": self.index_of_first_image,
- "infotexts": self.infotexts,
- "styles": self.styles,
- "job_timestamp": self.job_timestamp,
- "clip_skip": self.clip_skip,
- "is_using_inpainting_conditioning": self.is_using_inpainting_conditioning,
- "version": self.version,
- }
- return json.dumps(obj, default=lambda o: None)
- def infotext(self, p: StableDiffusionProcessing, index):
- return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
- def get_token_merging_ratio(self, for_hr=False):
- return self.token_merging_ratio_hr if for_hr else self.token_merging_ratio
- def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
- g = rng.ImageRNG(shape, seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=seed_resize_from_h, seed_resize_from_w=seed_resize_from_w)
- return g.next()
- class DecodedSamples(list):
- already_decoded = True
- def decode_latent_batch(model, batch, target_device=None, check_for_nans=False):
- samples = DecodedSamples()
- if check_for_nans:
- devices.test_for_nans(batch, "unet")
- for i in range(batch.shape[0]):
- sample = decode_first_stage(model, batch[i:i + 1])[0]
- if check_for_nans:
- try:
- devices.test_for_nans(sample, "vae")
- except devices.NansException as e:
- if shared.opts.auto_vae_precision_bfloat16:
- autofix_dtype = torch.bfloat16
- autofix_dtype_text = "bfloat16"
- autofix_dtype_setting = "Automatically convert VAE to bfloat16"
- autofix_dtype_comment = ""
- elif shared.opts.auto_vae_precision:
- autofix_dtype = torch.float32
- autofix_dtype_text = "32-bit float"
- autofix_dtype_setting = "Automatically revert VAE to 32-bit floats"
- autofix_dtype_comment = "\nTo always start with 32-bit VAE, use --no-half-vae commandline flag."
- else:
- raise e
- if devices.dtype_vae == autofix_dtype:
- raise e
- errors.print_error_explanation(
- "A tensor with all NaNs was produced in VAE.\n"
- f"Web UI will now convert VAE into {autofix_dtype_text} and retry.\n"
- f"To disable this behavior, disable the '{autofix_dtype_setting}' setting.{autofix_dtype_comment}"
- )
- devices.dtype_vae = autofix_dtype
- model.first_stage_model.to(devices.dtype_vae)
- batch = batch.to(devices.dtype_vae)
- sample = decode_first_stage(model, batch[i:i + 1])[0]
- if target_device is not None:
- sample = sample.to(target_device)
- samples.append(sample)
- return samples
- def get_fixed_seed(seed):
- if seed == '' or seed is None:
- seed = -1
- elif isinstance(seed, str):
- try:
- seed = int(seed)
- except Exception:
- seed = -1
- if seed == -1:
- return int(random.randrange(4294967294))
- return seed
- def fix_seed(p):
- p.seed = get_fixed_seed(p.seed)
- p.subseed = get_fixed_seed(p.subseed)
- def program_version():
- import launch
- res = launch.git_tag()
- if res == "<none>":
- res = None
- return res
- def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False, index=None, all_negative_prompts=None):
- """
- this function is used to generate the infotext that is stored in the generated images, it's contains the parameters that are required to generate the imagee
- Args:
- p: StableDiffusionProcessing
- all_prompts: list[str]
- all_seeds: list[int]
- all_subseeds: list[int]
- comments: list[str]
- iteration: int
- position_in_batch: int
- use_main_prompt: bool
- index: int
- all_negative_prompts: list[str]
- Returns: str
- Extra generation params
- p.extra_generation_params dictionary allows for additional parameters to be added to the infotext
- this can be use by the base webui or extensions.
- To add a new entry, add a new key value pair, the dictionary key will be used as the key of the parameter in the infotext
- the value generation_params can be defined as:
- - str | None
- - List[str|None]
- - callable func(**kwargs) -> str | None
- When defined as a string, it will be used as without extra processing; this is this most common use case.
- Defining as a list allows for parameter that changes across images in the job, for example, the 'Seed' parameter.
- The list should have the same length as the total number of images in the entire job.
- Defining as a callable function allows parameter cannot be generated earlier or when extra logic is required.
- For example 'Hires prompt', due to reasons the hr_prompt might be changed by process in the pipeline or extensions
- and may vary across different images, defining as a static string or list would not work.
- The function takes locals() as **kwargs, as such will have access to variables like 'p' and 'index'.
- the base signature of the function should be:
- func(**kwargs) -> str | None
- optionally it can have additional arguments that will be used in the function:
- func(p, index, **kwargs) -> str | None
- note: for better future compatibility even though this function will have access to all variables in the locals(),
- it is recommended to only use the arguments present in the function signature of create_infotext.
- For actual implementation examples, see StableDiffusionProcessingTxt2Img.init > get_hr_prompt.
- """
- if use_main_prompt:
- index = 0
- elif index is None:
- index = position_in_batch + iteration * p.batch_size
- if all_negative_prompts is None:
- all_negative_prompts = p.all_negative_prompts
- clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
- enable_hr = getattr(p, 'enable_hr', False)
- token_merging_ratio = p.get_token_merging_ratio()
- token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True)
- prompt_text = p.main_prompt if use_main_prompt else all_prompts[index]
- negative_prompt = p.main_negative_prompt if use_main_prompt else all_negative_prompts[index]
- uses_ensd = opts.eta_noise_seed_delta != 0
- if uses_ensd:
- uses_ensd = sd_samplers_common.is_sampler_using_eta_noise_seed_delta(p)
- generation_params = {
- "Steps": p.steps,
- "Sampler": p.sampler_name,
- "Schedule type": p.scheduler,
- "CFG scale": p.cfg_scale,
- "Image CFG scale": getattr(p, 'image_cfg_scale', None),
- "Seed": p.all_seeds[0] if use_main_prompt else all_seeds[index],
- "Face restoration": opts.face_restoration_model if p.restore_faces else None,
- "Size": f"{p.width}x{p.height}",
- "Model hash": p.sd_model_hash if opts.add_model_hash_to_info else None,
- "Model": p.sd_model_name if opts.add_model_name_to_info else None,
- "FP8 weight": opts.fp8_storage if devices.fp8 else None,
- "Cache FP16 weight for LoRA": opts.cache_fp16_weight if devices.fp8 else None,
- "VAE hash": p.sd_vae_hash if opts.add_vae_hash_to_info else None,
- "VAE": p.sd_vae_name if opts.add_vae_name_to_info else None,
- "Variation seed": (None if p.subseed_strength == 0 else (p.all_subseeds[0] if use_main_prompt else all_subseeds[index])),
- "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
- "Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
- "Denoising strength": p.extra_generation_params.get("Denoising strength"),
- "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
- "Clip skip": None if clip_skip <= 1 else clip_skip,
- "ENSD": opts.eta_noise_seed_delta if uses_ensd else None,
- "Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio,
- "Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
- "Init image hash": getattr(p, 'init_img_hash', None),
- "RNG": opts.randn_source if opts.randn_source != "GPU" else None,
- "Tiling": "True" if p.tiling else None,
- **p.extra_generation_params,
- "Version": program_version() if opts.add_version_to_infotext else None,
- "User": p.user if opts.add_user_name_to_info else None,
- }
- for key, value in generation_params.items():
- try:
- if isinstance(value, list):
- generation_params[key] = value[index]
- elif callable(value):
- generation_params[key] = value(**locals())
- except Exception:
- errors.report(f'Error creating infotext for key "{key}"', exc_info=True)
- generation_params[key] = None
- generation_params_text = ", ".join([k if k == v else f'{k}: {infotext_utils.quote(v)}' for k, v in generation_params.items() if v is not None])
- negative_prompt_text = f"\nNegative prompt: {negative_prompt}" if negative_prompt else ""
- return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip()
- def process_images(p: StableDiffusionProcessing) -> Processed:
- if p.scripts is not None:
- p.scripts.before_process(p)
- stored_opts = {k: opts.data[k] if k in opts.data else opts.get_default(k) for k in p.override_settings.keys() if k in opts.data}
- try:
- # if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint
- # and if after running refiner, the refiner model is not unloaded - webui swaps back to main model here, if model over is present it will be reloaded afterwards
- if sd_models.checkpoint_aliases.get(p.override_settings.get('sd_model_checkpoint')) is None:
- p.override_settings.pop('sd_model_checkpoint', None)
- sd_models.reload_model_weights()
- for k, v in p.override_settings.items():
- opts.set(k, v, is_api=True, run_callbacks=False)
- if k == 'sd_model_checkpoint':
- sd_models.reload_model_weights()
- if k == 'sd_vae':
- sd_vae.reload_vae_weights()
- sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio())
- # backwards compatibility, fix sampler and scheduler if invalid
- sd_samplers.fix_p_invalid_sampler_and_scheduler(p)
- with profiling.Profiler():
- res = process_images_inner(p)
- finally:
- sd_models.apply_token_merging(p.sd_model, 0)
- # restore opts to original state
- if p.override_settings_restore_afterwards:
- for k, v in stored_opts.items():
- setattr(opts, k, v)
- if k == 'sd_vae':
- sd_vae.reload_vae_weights()
- return res
- def process_images_inner(p: StableDiffusionProcessing) -> Processed:
- """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
- if isinstance(p.prompt, list):
- assert(len(p.prompt) > 0)
- else:
- assert p.prompt is not None
- devices.torch_gc()
- seed = get_fixed_seed(p.seed)
- subseed = get_fixed_seed(p.subseed)
- if p.restore_faces is None:
- p.restore_faces = opts.face_restoration
- if p.tiling is None:
- p.tiling = opts.tiling
- if p.refiner_checkpoint not in (None, "", "None", "none"):
- p.refiner_checkpoint_info = sd_models.get_closet_checkpoint_match(p.refiner_checkpoint)
- if p.refiner_checkpoint_info is None:
- raise Exception(f'Could not find checkpoint with name {p.refiner_checkpoint}')
- if hasattr(shared.sd_model, 'fix_dimensions'):
- p.width, p.height = shared.sd_model.fix_dimensions(p.width, p.height)
- p.sd_model_name = shared.sd_model.sd_checkpoint_info.name_for_extra
- p.sd_model_hash = shared.sd_model.sd_model_hash
- p.sd_vae_name = sd_vae.get_loaded_vae_name()
- p.sd_vae_hash = sd_vae.get_loaded_vae_hash()
- modules.sd_hijack.model_hijack.apply_circular(p.tiling)
- modules.sd_hijack.model_hijack.clear_comments()
- p.fill_fields_from_opts()
- p.setup_prompts()
- if isinstance(seed, list):
- p.all_seeds = seed
- else:
- p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
- if isinstance(subseed, list):
- p.all_subseeds = subseed
- else:
- p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
- if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
- model_hijack.embedding_db.load_textual_inversion_embeddings()
- if p.scripts is not None:
- p.scripts.process(p)
- infotexts = []
- output_images = []
- with torch.no_grad(), p.sd_model.ema_scope():
- with devices.autocast():
- p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
- # for OSX, loading the model during sampling changes the generated picture, so it is loaded here
- if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN":
- sd_vae_approx.model()
- sd_unet.apply_unet()
- if state.job_count == -1:
- state.job_count = p.n_iter
- for n in range(p.n_iter):
- p.iteration = n
- if state.skipped:
- state.skipped = False
- if state.interrupted or state.stopping_generation:
- break
- sd_models.reload_model_weights() # model can be changed for example by refiner
- p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
- p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
- p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
- p.subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
- latent_channels = getattr(shared.sd_model, 'latent_channels', opt_C)
- p.rng = rng.ImageRNG((latent_channels, p.height // opt_f, p.width // opt_f), p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w)
- if p.scripts is not None:
- p.scripts.before_process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
- if len(p.prompts) == 0:
- break
- p.parse_extra_network_prompts()
- if not p.disable_extra_networks:
- with devices.autocast():
- extra_networks.activate(p, p.extra_network_data)
- if p.scripts is not None:
- p.scripts.process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
- p.setup_conds()
- p.extra_generation_params.update(model_hijack.extra_generation_params)
- # params.txt should be saved after scripts.process_batch, since the
- # infotext could be modified by that callback
- # Example: a wildcard processed by process_batch sets an extra model
- # strength, which is saved as "Model Strength: 1.0" in the infotext
- if n == 0 and not cmd_opts.no_prompt_history:
- with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
- processed = Processed(p, [])
- file.write(processed.infotext(p, 0))
- for comment in model_hijack.comments:
- p.comment(comment)
- if p.n_iter > 1:
- shared.state.job = f"Batch {n+1} out of {p.n_iter}"
- sd_models.apply_alpha_schedule_override(p.sd_model, p)
- with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
- samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
- if p.scripts is not None:
- ps = scripts.PostSampleArgs(samples_ddim)
- p.scripts.post_sample(p, ps)
- samples_ddim = ps.samples
- if getattr(samples_ddim, 'already_decoded', False):
- x_samples_ddim = samples_ddim
- else:
- devices.test_for_nans(samples_ddim, "unet")
- if opts.sd_vae_decode_method != 'Full':
- p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method
- x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)
- x_samples_ddim = torch.stack(x_samples_ddim).float()
- x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
- del samples_ddim
- if lowvram.is_enabled(shared.sd_model):
- lowvram.send_everything_to_cpu()
- devices.torch_gc()
- state.nextjob()
- if p.scripts is not None:
- p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
- p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
- p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
- batch_params = scripts.PostprocessBatchListArgs(list(x_samples_ddim))
- p.scripts.postprocess_batch_list(p, batch_params, batch_number=n)
- x_samples_ddim = batch_params.images
- def infotext(index=0, use_main_prompt=False):
- return create_infotext(p, p.prompts, p.seeds, p.subseeds, use_main_prompt=use_main_prompt, index=index, all_negative_prompts=p.negative_prompts)
- save_samples = p.save_samples()
- for i, x_sample in enumerate(x_samples_ddim):
- p.batch_index = i
- x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
- x_sample = x_sample.astype(np.uint8)
- if p.restore_faces:
- if save_samples and opts.save_images_before_face_restoration:
- images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-face-restoration")
- devices.torch_gc()
- x_sample = modules.face_restoration.restore_faces(x_sample)
- devices.torch_gc()
- image = Image.fromarray(x_sample)
- if p.scripts is not None:
- pp = scripts.PostprocessImageArgs(image)
- p.scripts.postprocess_image(p, pp)
- image = pp.image
- mask_for_overlay = getattr(p, "mask_for_overlay", None)
- if not shared.opts.overlay_inpaint:
- overlay_image = None
- elif getattr(p, "overlay_images", None) is not None and i < len(p.overlay_images):
- overlay_image = p.overlay_images[i]
- else:
- overlay_image = None
- if p.scripts is not None:
- ppmo = scripts.PostProcessMaskOverlayArgs(i, mask_for_overlay, overlay_image)
- p.scripts.postprocess_maskoverlay(p, ppmo)
- mask_for_overlay, overlay_image = ppmo.mask_for_overlay, ppmo.overlay_image
- if p.color_corrections is not None and i < len(p.color_corrections):
- if save_samples and opts.save_images_before_color_correction:
- image_without_cc, _ = apply_overlay(image, p.paste_to, overlay_image)
- images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-color-correction")
- image = apply_color_correction(p.color_corrections[i], image)
- # If the intention is to show the output from the model
- # that is being composited over the original image,
- # we need to keep the original image around
- # and use it in the composite step.
- image, original_denoised_image = apply_overlay(image, p.paste_to, overlay_image)
- if p.scripts is not None:
- pp = scripts.PostprocessImageArgs(image)
- p.scripts.postprocess_image_after_composite(p, pp)
- image = pp.image
- if save_samples:
- images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p)
- text = infotext(i)
- infotexts.append(text)
- if opts.enable_pnginfo:
- image.info["parameters"] = text
- output_images.append(image)
- if mask_for_overlay is not None:
- if opts.return_mask or opts.save_mask:
- image_mask = mask_for_overlay.convert('RGB')
- if save_samples and opts.save_mask:
- images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask")
- if opts.return_mask:
- output_images.append(image_mask)
- if opts.return_mask_composite or opts.save_mask_composite:
- image_mask_composite = Image.composite(original_denoised_image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
- if save_samples and opts.save_mask_composite:
- images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite")
- if opts.return_mask_composite:
- output_images.append(image_mask_composite)
- del x_samples_ddim
- devices.torch_gc()
- if not infotexts:
- infotexts.append(Processed(p, []).infotext(p, 0))
- p.color_corrections = None
- index_of_first_image = 0
- unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple
- if (opts.return_grid or opts.grid_save) and not p.do_not_save_grid and not unwanted_grid_because_of_img_count:
- grid = images.image_grid(output_images, p.batch_size)
- if opts.return_grid:
- text = infotext(use_main_prompt=True)
- infotexts.insert(0, text)
- if opts.enable_pnginfo:
- grid.info["parameters"] = text
- output_images.insert(0, grid)
- index_of_first_image = 1
- if opts.grid_save:
- images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(use_main_prompt=True), short_filename=not opts.grid_extended_filename, p=p, grid=True)
- if not p.disable_extra_networks and p.extra_network_data:
- extra_networks.deactivate(p, p.extra_network_data)
- devices.torch_gc()
- res = Processed(
- p,
- images_list=output_images,
- seed=p.all_seeds[0],
- info=infotexts[0],
- subseed=p.all_subseeds[0],
- index_of_first_image=index_of_first_image,
- infotexts=infotexts,
- )
- if p.scripts is not None:
- p.scripts.postprocess(p, res)
- return res
- def old_hires_fix_first_pass_dimensions(width, height):
- """old algorithm for auto-calculating first pass size"""
- desired_pixel_count = 512 * 512
- actual_pixel_count = width * height
- scale = math.sqrt(desired_pixel_count / actual_pixel_count)
- width = math.ceil(scale * width / 64) * 64
- height = math.ceil(scale * height / 64) * 64
- return width, height
- @dataclass(repr=False)
- class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
- enable_hr: bool = False
- denoising_strength: float = 0.75
- firstphase_width: int = 0
- firstphase_height: int = 0
- hr_scale: float = 2.0
- hr_upscaler: str = None
- hr_second_pass_steps: int = 0
- hr_resize_x: int = 0
- hr_resize_y: int = 0
- hr_checkpoint_name: str = None
- hr_sampler_name: str = None
- hr_scheduler: str = None
- hr_prompt: str = ''
- hr_negative_prompt: str = ''
- force_task_id: str = None
- cached_hr_uc = [None, None]
- cached_hr_c = [None, None]
- hr_checkpoint_info: dict = field(default=None, init=False)
- hr_upscale_to_x: int = field(default=0, init=False)
- hr_upscale_to_y: int = field(default=0, init=False)
- truncate_x: int = field(default=0, init=False)
- truncate_y: int = field(default=0, init=False)
- applied_old_hires_behavior_to: tuple = field(default=None, init=False)
- latent_scale_mode: dict = field(default=None, init=False)
- hr_c: tuple | None = field(default=None, init=False)
- hr_uc: tuple | None = field(default=None, init=False)
- all_hr_prompts: list = field(default=None, init=False)
- all_hr_negative_prompts: list = field(default=None, init=False)
- hr_prompts: list = field(default=None, init=False)
- hr_negative_prompts: list = field(default=None, init=False)
- hr_extra_network_data: list = field(default=None, init=False)
- def __post_init__(self):
- super().__post_init__()
- if self.firstphase_width != 0 or self.firstphase_height != 0:
- self.hr_upscale_to_x = self.width
- self.hr_upscale_to_y = self.height
- self.width = self.firstphase_width
- self.height = self.firstphase_height
- self.cached_hr_uc = StableDiffusionProcessingTxt2Img.cached_hr_uc
- self.cached_hr_c = StableDiffusionProcessingTxt2Img.cached_hr_c
- def calculate_target_resolution(self):
- if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height):
- self.hr_resize_x = self.width
- self.hr_resize_y = self.height
- self.hr_upscale_to_x = self.width
- self.hr_upscale_to_y = self.height
- self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height)
- self.applied_old_hires_behavior_to = (self.width, self.height)
- if self.hr_resize_x == 0 and self.hr_resize_y == 0:
- self.extra_generation_params["Hires upscale"] = self.hr_scale
- self.hr_upscale_to_x = int(self.width * self.hr_scale)
- self.hr_upscale_to_y = int(self.height * self.hr_scale)
- else:
- self.extra_generation_params["Hires resize"] = f"{self.hr_resize_x}x{self.hr_resize_y}"
- if self.hr_resize_y == 0:
- self.hr_upscale_to_x = self.hr_resize_x
- self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
- elif self.hr_resize_x == 0:
- self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
- self.hr_upscale_to_y = self.hr_resize_y
- else:
- target_w = self.hr_resize_x
- target_h = self.hr_resize_y
- src_ratio = self.width / self.height
- dst_ratio = self.hr_resize_x / self.hr_resize_y
- if src_ratio < dst_ratio:
- self.hr_upscale_to_x = self.hr_resize_x
- self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
- else:
- self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
- self.hr_upscale_to_y = self.hr_resize_y
- self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f
- self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f
- def init(self, all_prompts, all_seeds, all_subseeds):
- if self.enable_hr:
- self.extra_generation_params["Denoising strength"] = self.denoising_strength
- if self.hr_checkpoint_name and self.hr_checkpoint_name != 'Use same checkpoint':
- self.hr_checkpoint_info = sd_models.get_closet_checkpoint_match(self.hr_checkpoint_name)
- if self.hr_checkpoint_info is None:
- raise Exception(f'Could not find checkpoint with name {self.hr_checkpoint_name}')
- self.extra_generation_params["Hires checkpoint"] = self.hr_checkpoint_info.short_title
- if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
- self.extra_generation_params["Hires sampler"] = self.hr_sampler_name
- def get_hr_prompt(p, index, prompt_text, **kwargs):
- hr_prompt = p.all_hr_prompts[index]
- return hr_prompt if hr_prompt != prompt_text else None
- def get_hr_negative_prompt(p, index, negative_prompt, **kwargs):
- hr_negative_prompt = p.all_hr_negative_prompts[index]
- return hr_negative_prompt if hr_negative_prompt != negative_prompt else None
- self.extra_generation_params["Hires prompt"] = get_hr_prompt
- self.extra_generation_params["Hires negative prompt"] = get_hr_negative_prompt
- self.extra_generation_params["Hires schedule type"] = None # to be set in sd_samplers_kdiffusion.py
- if self.hr_scheduler is None:
- self.hr_scheduler = self.scheduler
- self.latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
- if self.enable_hr and self.latent_scale_mode is None:
- if not any(x.name == self.hr_upscaler for x in shared.sd_upscalers):
- raise Exception(f"could not find upscaler named {self.hr_upscaler}")
- self.calculate_target_resolution()
- if not state.processing_has_refined_job_count:
- if state.job_count == -1:
- state.job_count = self.n_iter
- if getattr(self, 'txt2img_upscale', False):
- total_steps = (self.hr_second_pass_steps or self.steps) * state.job_count
- else:
- total_steps = (self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count
- shared.total_tqdm.updateTotal(total_steps)
- state.job_count = state.job_count * 2
- state.processing_has_refined_job_count = True
- if self.hr_second_pass_steps:
- self.extra_generation_params["Hires steps"] = self.hr_second_pass_steps
- if self.hr_upscaler is not None:
- self.extra_generation_params["Hires upscaler"] = self.hr_upscaler
- def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
- self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
- if self.firstpass_image is not None and self.enable_hr:
- # here we don't need to generate image, we just take self.firstpass_image and prepare it for hires fix
- if self.latent_scale_mode is None:
- image = np.array(self.firstpass_image).astype(np.float32) / 255.0 * 2.0 - 1.0
- image = np.moveaxis(image, 2, 0)
- samples = None
- decoded_samples = torch.asarray(np.expand_dims(image, 0))
- else:
- image = np.array(self.firstpass_image).astype(np.float32) / 255.0
- image = np.moveaxis(image, 2, 0)
- image = torch.from_numpy(np.expand_dims(image, axis=0))
- image = image.to(shared.device, dtype=devices.dtype_vae)
- if opts.sd_vae_encode_method != 'Full':
- self.extra_generation_params['VAE Encoder'] = opts.sd_vae_encode_method
- samples = images_tensor_to_samples(image, approximation_indexes.get(opts.sd_vae_encode_method), self.sd_model)
- decoded_samples = None
- devices.torch_gc()
- else:
- # here we generate an image normally
- x = self.rng.next()
- if self.scripts is not None:
- self.scripts.process_before_every_sampling(
- p=self,
- x=x,
- noise=x,
- c=conditioning,
- uc=unconditional_conditioning
- )
- samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
- del x
- if not self.enable_hr:
- return samples
- devices.torch_gc()
- if self.latent_scale_mode is None:
- decoded_samples = torch.stack(decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)).to(dtype=torch.float32)
- else:
- decoded_samples = None
- with sd_models.SkipWritingToConfig():
- sd_models.reload_model_weights(info=self.hr_checkpoint_info)
- return self.sample_hr_pass(samples, decoded_samples, seeds, subseeds, subseed_strength, prompts)
- def sample_hr_pass(self, samples, decoded_samples, seeds, subseeds, subseed_strength, prompts):
- if shared.state.interrupted:
- return samples
- self.is_hr_pass = True
- target_width = self.hr_upscale_to_x
- target_height = self.hr_upscale_to_y
- def save_intermediate(image, index):
- """saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images"""
- if not self.save_samples() or not opts.save_images_before_highres_fix:
- return
- if not isinstance(image, Image.Image):
- image = sd_samplers.sample_to_image(image, index, approximation=0)
- info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index)
- images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, p=self, suffix="-before-highres-fix")
- img2img_sampler_name = self.hr_sampler_name or self.sampler_name
- self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model)
- if self.latent_scale_mode is not None:
- for i in range(samples.shape[0]):
- save_intermediate(samples, i)
- samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=self.latent_scale_mode["mode"], antialias=self.latent_scale_mode["antialias"])
- # Avoid making the inpainting conditioning unless necessary as
- # this does need some extra compute to decode / encode the image again.
- if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0:
- image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples)
- else:
- image_conditioning = self.txt2img_image_conditioning(samples)
- else:
- lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
- batch_images = []
- for i, x_sample in enumerate(lowres_samples):
- x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
- x_sample = x_sample.astype(np.uint8)
- image = Image.fromarray(x_sample)
- save_intermediate(image, i)
- image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler)
- image = np.array(image).astype(np.float32) / 255.0
- image = np.moveaxis(image, 2, 0)
- batch_images.append(image)
- decoded_samples = torch.from_numpy(np.array(batch_images))
- decoded_samples = decoded_samples.to(shared.device, dtype=devices.dtype_vae)
- if opts.sd_vae_encode_method != 'Full':
- self.extra_generation_params['VAE Encoder'] = opts.sd_vae_encode_method
- samples = images_tensor_to_samples(decoded_samples, approximation_indexes.get(opts.sd_vae_encode_method))
- image_conditioning = self.img2img_image_conditioning(decoded_samples, samples)
- shared.state.nextjob()
- samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]
- self.rng = rng.ImageRNG(samples.shape[1:], self.seeds, subseeds=self.subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w)
- noise = self.rng.next()
- # GC now before running the next img2img to prevent running out of memory
- devices.torch_gc()
- if not self.disable_extra_networks:
- with devices.autocast():
- extra_networks.activate(self, self.hr_extra_network_data)
- with devices.autocast():
- self.calculate_hr_conds()
- sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True))
- if self.scripts is not None:
- self.scripts.before_hr(self)
- self.scripts.process_before_every_sampling(
- p=self,
- x=samples,
- noise=noise,
- c=self.hr_c,
- uc=self.hr_uc,
- )
- samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
- sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio())
- self.sampler = None
- devices.torch_gc()
- decoded_samples = decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)
- self.is_hr_pass = False
- return decoded_samples
- def close(self):
- super().close()
- self.hr_c = None
- self.hr_uc = None
- if not opts.persistent_cond_cache:
- StableDiffusionProcessingTxt2Img.cached_hr_uc = [None, None]
- StableDiffusionProcessingTxt2Img.cached_hr_c = [None, None]
- def setup_prompts(self):
- super().setup_prompts()
- if not self.enable_hr:
- return
- if self.hr_prompt == '':
- self.hr_prompt = self.prompt
- if self.hr_negative_prompt == '':
- self.hr_negative_prompt = self.negative_prompt
- if isinstance(self.hr_prompt, list):
- self.all_hr_prompts = self.hr_prompt
- else:
- self.all_hr_prompts = self.batch_size * self.n_iter * [self.hr_prompt]
- if isinstance(self.hr_negative_prompt, list):
- self.all_hr_negative_prompts = self.hr_negative_prompt
- else:
- self.all_hr_negative_prompts = self.batch_size * self.n_iter * [self.hr_negative_prompt]
- self.all_hr_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_hr_prompts]
- self.all_hr_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_hr_negative_prompts]
- def calculate_hr_conds(self):
- if self.hr_c is not None:
- return
- hr_prompts = prompt_parser.SdConditioning(self.hr_prompts, width=self.hr_upscale_to_x, height=self.hr_upscale_to_y)
- hr_negative_prompts = prompt_parser.SdConditioning(self.hr_negative_prompts, width=self.hr_upscale_to_x, height=self.hr_upscale_to_y, is_negative_prompt=True)
- sampler_config = sd_samplers.find_sampler_config(self.hr_sampler_name or self.sampler_name)
- steps = self.hr_second_pass_steps or self.steps
- total_steps = sampler_config.total_steps(steps) if sampler_config else steps
- self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, hr_negative_prompts, self.firstpass_steps, [self.cached_hr_uc, self.cached_uc], self.hr_extra_network_data, total_steps)
- self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, hr_prompts, self.firstpass_steps, [self.cached_hr_c, self.cached_c], self.hr_extra_network_data, total_steps)
- def setup_conds(self):
- if self.is_hr_pass:
- # if we are in hr pass right now, the call is being made from the refiner, and we don't need to setup firstpass cons or switch model
- self.hr_c = None
- self.calculate_hr_conds()
- return
- super().setup_conds()
- self.hr_uc = None
- self.hr_c = None
- if self.enable_hr and self.hr_checkpoint_info is None:
- if shared.opts.hires_fix_use_firstpass_conds:
- self.calculate_hr_conds()
- elif lowvram.is_enabled(shared.sd_model) and shared.sd_model.sd_checkpoint_info == sd_models.select_checkpoint(): # if in lowvram mode, we need to calculate conds right away, before the cond NN is unloaded
- with devices.autocast():
- extra_networks.activate(self, self.hr_extra_network_data)
- self.calculate_hr_conds()
- with devices.autocast():
- extra_networks.activate(self, self.extra_network_data)
- def get_conds(self):
- if self.is_hr_pass:
- return self.hr_c, self.hr_uc
- return super().get_conds()
- def parse_extra_network_prompts(self):
- res = super().parse_extra_network_prompts()
- if self.enable_hr:
- self.hr_prompts = self.all_hr_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
- self.hr_negative_prompts = self.all_hr_negative_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
- self.hr_prompts, self.hr_extra_network_data = extra_networks.parse_prompts(self.hr_prompts)
- return res
- @dataclass(repr=False)
- class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
- init_images: list = None
- resize_mode: int = 0
- denoising_strength: float = 0.75
- image_cfg_scale: float = None
- mask: Any = None
- mask_blur_x: int = 4
- mask_blur_y: int = 4
- mask_blur: int = None
- mask_round: bool = True
- inpainting_fill: int = 0
- inpaint_full_res: bool = True
- inpaint_full_res_padding: int = 0
- inpainting_mask_invert: int = 0
- initial_noise_multiplier: float = None
- latent_mask: Image = None
- force_task_id: str = None
- image_mask: Any = field(default=None, init=False)
- nmask: torch.Tensor = field(default=None, init=False)
- image_conditioning: torch.Tensor = field(default=None, init=False)
- init_img_hash: str = field(default=None, init=False)
- mask_for_overlay: Image = field(default=None, init=False)
- init_latent: torch.Tensor = field(default=None, init=False)
- def __post_init__(self):
- super().__post_init__()
- self.image_mask = self.mask
- self.mask = None
- self.initial_noise_multiplier = opts.initial_noise_multiplier if self.initial_noise_multiplier is None else self.initial_noise_multiplier
- @property
- def mask_blur(self):
- if self.mask_blur_x == self.mask_blur_y:
- return self.mask_blur_x
- return None
- @mask_blur.setter
- def mask_blur(self, value):
- if isinstance(value, int):
- self.mask_blur_x = value
- self.mask_blur_y = value
- def init(self, all_prompts, all_seeds, all_subseeds):
- self.extra_generation_params["Denoising strength"] = self.denoising_strength
- self.image_cfg_scale: float = self.image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None
- self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
- crop_region = None
- image_mask = self.image_mask
- if image_mask is not None:
- # image_mask is passed in as RGBA by Gradio to support alpha masks,
- # but we still want to support binary masks.
- image_mask = create_binary_mask(image_mask, round=self.mask_round)
- if self.inpainting_mask_invert:
- image_mask = ImageOps.invert(image_mask)
- self.extra_generation_params["Mask mode"] = "Inpaint not masked"
- if self.mask_blur_x > 0:
- np_mask = np.array(image_mask)
- kernel_size = 2 * int(2.5 * self.mask_blur_x + 0.5) + 1
- np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), self.mask_blur_x)
- image_mask = Image.fromarray(np_mask)
- if self.mask_blur_y > 0:
- np_mask = np.array(image_mask)
- kernel_size = 2 * int(2.5 * self.mask_blur_y + 0.5) + 1
- np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), self.mask_blur_y)
- image_mask = Image.fromarray(np_mask)
- if self.mask_blur_x > 0 or self.mask_blur_y > 0:
- self.extra_generation_params["Mask blur"] = self.mask_blur
- if self.inpaint_full_res:
- self.mask_for_overlay = image_mask
- mask = image_mask.convert('L')
- crop_region = masking.get_crop_region_v2(mask, self.inpaint_full_res_padding)
- if crop_region:
- crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
- x1, y1, x2, y2 = crop_region
- mask = mask.crop(crop_region)
- image_mask = images.resize_image(2, mask, self.width, self.height)
- self.paste_to = (x1, y1, x2-x1, y2-y1)
- self.extra_generation_params["Inpaint area"] = "Only masked"
- self.extra_generation_params["Masked area padding"] = self.inpaint_full_res_padding
- else:
- crop_region = None
- image_mask = None
- self.mask_for_overlay = None
- self.inpaint_full_res = False
- massage = 'Unable to perform "Inpaint Only mask" because mask is blank, switch to img2img mode.'
- model_hijack.comments.append(massage)
- logging.info(massage)
- else:
- image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
- np_mask = np.array(image_mask)
- np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
- self.mask_for_overlay = Image.fromarray(np_mask)
- self.overlay_images = []
- latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
- add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
- if add_color_corrections:
- self.color_corrections = []
- imgs = []
- for img in self.init_images:
- # Save init image
- if opts.save_init_img:
- self.init_img_hash = hashlib.md5(img.tobytes()).hexdigest()
- images.save_image(img, path=opts.outdir_init_images, basename=None, forced_filename=self.init_img_hash, save_to_dirs=False, existing_info=img.info)
- image = images.flatten(img, opts.img2img_background_color)
- if crop_region is None and self.resize_mode != 3:
- image = images.resize_image(self.resize_mode, image, self.width, self.height)
- if image_mask is not None:
- if self.mask_for_overlay.size != (image.width, image.height):
- self.mask_for_overlay = images.resize_image(self.resize_mode, self.mask_for_overlay, image.width, image.height)
- image_masked = Image.new('RGBa', (image.width, image.height))
- image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
- self.overlay_images.append(image_masked.convert('RGBA'))
- # crop_region is not None if we are doing inpaint full res
- if crop_region is not None:
- image = image.crop(crop_region)
- image = images.resize_image(2, image, self.width, self.height)
- if image_mask is not None:
- if self.inpainting_fill != 1:
- image = masking.fill(image, latent_mask)
- if self.inpainting_fill == 0:
- self.extra_generation_params["Masked content"] = 'fill'
- if add_color_corrections:
- self.color_corrections.append(setup_color_correction(image))
- image = np.array(image).astype(np.float32) / 255.0
- image = np.moveaxis(image, 2, 0)
- imgs.append(image)
- if len(imgs) == 1:
- batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
- if self.overlay_images is not None:
- self.overlay_images = self.overlay_images * self.batch_size
- if self.color_corrections is not None and len(self.color_corrections) == 1:
- self.color_corrections = self.color_corrections * self.batch_size
- elif len(imgs) <= self.batch_size:
- self.batch_size = len(imgs)
- batch_images = np.array(imgs)
- else:
- raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")
- image = torch.from_numpy(batch_images)
- image = image.to(shared.device, dtype=devices.dtype_vae)
- if opts.sd_vae_encode_method != 'Full':
- self.extra_generation_params['VAE Encoder'] = opts.sd_vae_encode_method
- self.init_latent = images_tensor_to_samples(image, approximation_indexes.get(opts.sd_vae_encode_method), self.sd_model)
- devices.torch_gc()
- if self.resize_mode == 3:
- self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
- if image_mask is not None:
- init_mask = latent_mask
- latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
- latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
- latmask = latmask[0]
- if self.mask_round:
- latmask = np.around(latmask)
- latmask = np.tile(latmask[None], (self.init_latent.shape[1], 1, 1))
- self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(devices.dtype)
- self.nmask = torch.asarray(latmask).to(shared.device).type(devices.dtype)
- # this needs to be fixed to be done in sample() using actual seeds for batches
- if self.inpainting_fill == 2:
- self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
- self.extra_generation_params["Masked content"] = 'latent noise'
- elif self.inpainting_fill == 3:
- self.init_latent = self.init_latent * self.mask
- self.extra_generation_params["Masked content"] = 'latent nothing'
- self.image_conditioning = self.img2img_image_conditioning(image * 2 - 1, self.init_latent, image_mask, self.mask_round)
- def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
- x = self.rng.next()
- if self.initial_noise_multiplier != 1.0:
- self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier
- x *= self.initial_noise_multiplier
- if self.scripts is not None:
- self.scripts.process_before_every_sampling(
- p=self,
- x=self.init_latent,
- noise=x,
- c=conditioning,
- uc=unconditional_conditioning
- )
- samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
- if self.mask is not None:
- blended_samples = samples * self.nmask + self.init_latent * self.mask
- if self.scripts is not None:
- mba = scripts.MaskBlendArgs(samples, self.nmask, self.init_latent, self.mask, blended_samples)
- self.scripts.on_mask_blend(self, mba)
- blended_samples = mba.blended_latent
- samples = blended_samples
- del x
- devices.torch_gc()
- return samples
- def get_token_merging_ratio(self, for_hr=False):
- return self.token_merging_ratio or ("token_merging_ratio" in self.override_settings and opts.token_merging_ratio) or opts.token_merging_ratio_img2img or opts.token_merging_ratio
|