123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- import os
- import numpy as np
- from PIL import Image
- from modules import processing, shared, images, devices
- from modules.shared import opts
- import modules.gfpgan_model
- from modules.ui import plaintext_to_html
- import modules.codeformer_model
- import piexif
- import piexif.helper
- cached_images = {}
- def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility):
- devices.torch_gc()
- imageArr = []
- # Also keep track of original file names
- imageNameArr = []
- if extras_mode == 1:
- #convert file to pillow image
- for img in image_folder:
- image = Image.fromarray(np.array(Image.open(img)))
- imageArr.append(image)
- imageNameArr.append(os.path.splitext(img.orig_name)[0])
- else:
- imageArr.append(image)
- imageNameArr.append(None)
- outpath = opts.outdir_samples or opts.outdir_extras_samples
- outputs = []
- for image, image_name in zip(imageArr, imageNameArr):
- existing_pnginfo = image.info or {}
- image = image.convert("RGB")
- info = ""
- if gfpgan_visibility > 0:
- restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
- res = Image.fromarray(restored_img)
- if gfpgan_visibility < 1.0:
- res = Image.blend(image, res, gfpgan_visibility)
- info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
- image = res
- if codeformer_visibility > 0:
- restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
- res = Image.fromarray(restored_img)
- if codeformer_visibility < 1.0:
- res = Image.blend(image, res, codeformer_visibility)
- info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
- image = res
- if upscaling_resize != 1.0:
- def upscale(image, scaler_index, resize):
- small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10))
- pixels = tuple(np.array(small).flatten().tolist())
- key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight) + pixels
- c = cached_images.get(key)
- if c is None:
- upscaler = shared.sd_upscalers[scaler_index]
- c = upscaler.upscale(image, image.width * resize, image.height * resize)
- cached_images[key] = c
- return c
- info += f"Upscale: {round(upscaling_resize, 3)}, model:{shared.sd_upscalers[extras_upscaler_1].name}\n"
- res = upscale(image, extras_upscaler_1, upscaling_resize)
- if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
- res2 = upscale(image, extras_upscaler_2, upscaling_resize)
- info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {round(extras_upscaler_2_visibility, 3)}, model:{shared.sd_upscalers[extras_upscaler_2].name}\n"
- res = Image.blend(res, res2, extras_upscaler_2_visibility)
- image = res
- while len(cached_images) > 2:
- del cached_images[next(iter(cached_images.keys()))]
- images.save_image(image, path=outpath, basename="", seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
- no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo,
- forced_filename=image_name if opts.use_original_name_batch else None)
- outputs.append(image)
- return outputs, plaintext_to_html(info), ''
- def run_pnginfo(image):
- if image is None:
- return '', '', ''
- items = image.info
- if "exif" in image.info:
- exif = piexif.load(image.info["exif"])
- exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'')
- try:
- exif_comment = piexif.helper.UserComment.load(exif_comment)
- except ValueError:
- exif_comment = exif_comment.decode('utf8', errors="ignore")
- items['exif comment'] = exif_comment
- for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
- 'loop', 'background', 'timestamp', 'duration']:
- items.pop(field, None)
- info = ''
- for key, text in items.items():
- info += f"""
- <div>
- <p><b>{plaintext_to_html(str(key))}</b></p>
- <p>{plaintext_to_html(str(text))}</p>
- </div>
- """.strip()+"\n"
- if len(info) == 0:
- message = "Nothing found in the image."
- info = f"<div><p>{message}<p></div>"
- return '', '', info
|