sd_models_config.py 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119
  1. import re
  2. import os
  3. import torch
  4. from modules import shared, paths, sd_disable_initialization
  5. sd_configs_path = shared.sd_configs_path
  6. sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", "stable-diffusion")
  7. config_default = shared.sd_default_config
  8. config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml")
  9. config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml")
  10. config_sd2_inpainting = os.path.join(sd_repo_configs_path, "v2-inpainting-inference.yaml")
  11. config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml")
  12. config_unclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-l-inference.yaml")
  13. config_unopenclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-h-inference.yaml")
  14. config_inpainting = os.path.join(sd_configs_path, "v1-inpainting-inference.yaml")
  15. config_instruct_pix2pix = os.path.join(sd_configs_path, "instruct-pix2pix.yaml")
  16. config_alt_diffusion = os.path.join(sd_configs_path, "alt-diffusion-inference.yaml")
  17. def is_using_v_parameterization_for_sd2(state_dict):
  18. """
  19. Detects whether unet in state_dict is using v-parameterization. Returns True if it is. You're welcome.
  20. """
  21. import ldm.modules.diffusionmodules.openaimodel
  22. from modules import devices
  23. device = devices.cpu
  24. with sd_disable_initialization.DisableInitialization():
  25. unet = ldm.modules.diffusionmodules.openaimodel.UNetModel(
  26. use_checkpoint=True,
  27. use_fp16=False,
  28. image_size=32,
  29. in_channels=4,
  30. out_channels=4,
  31. model_channels=320,
  32. attention_resolutions=[4, 2, 1],
  33. num_res_blocks=2,
  34. channel_mult=[1, 2, 4, 4],
  35. num_head_channels=64,
  36. use_spatial_transformer=True,
  37. use_linear_in_transformer=True,
  38. transformer_depth=1,
  39. context_dim=1024,
  40. legacy=False
  41. )
  42. unet.eval()
  43. with torch.no_grad():
  44. unet_sd = {k.replace("model.diffusion_model.", ""): v for k, v in state_dict.items() if "model.diffusion_model." in k}
  45. unet.load_state_dict(unet_sd, strict=True)
  46. unet.to(device=device, dtype=torch.float)
  47. test_cond = torch.ones((1, 2, 1024), device=device) * 0.5
  48. x_test = torch.ones((1, 4, 8, 8), device=device) * 0.5
  49. out = (unet(x_test, torch.asarray([999], device=device), context=test_cond) - x_test).mean().item()
  50. return out < -1
  51. def guess_model_config_from_state_dict(sd, filename):
  52. sd2_cond_proj_weight = sd.get('cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight', None)
  53. diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None)
  54. sd2_variations_weight = sd.get('embedder.model.ln_final.weight', None)
  55. if sd.get('depth_model.model.pretrained.act_postprocess3.0.project.0.bias', None) is not None:
  56. return config_depth_model
  57. elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 768:
  58. return config_unclip
  59. elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 1024:
  60. return config_unopenclip
  61. if sd2_cond_proj_weight is not None and sd2_cond_proj_weight.shape[1] == 1024:
  62. if diffusion_model_input.shape[1] == 9:
  63. return config_sd2_inpainting
  64. elif is_using_v_parameterization_for_sd2(sd):
  65. return config_sd2v
  66. else:
  67. return config_sd2
  68. if diffusion_model_input is not None:
  69. if diffusion_model_input.shape[1] == 9:
  70. return config_inpainting
  71. if diffusion_model_input.shape[1] == 8:
  72. return config_instruct_pix2pix
  73. if sd.get('cond_stage_model.roberta.embeddings.word_embeddings.weight', None) is not None:
  74. return config_alt_diffusion
  75. return config_default
  76. def find_checkpoint_config(state_dict, info):
  77. if info is None:
  78. return guess_model_config_from_state_dict(state_dict, "")
  79. config = find_checkpoint_config_near_filename(info)
  80. if config is not None:
  81. return config
  82. return guess_model_config_from_state_dict(state_dict, info.filename)
  83. def find_checkpoint_config_near_filename(info):
  84. if info is None:
  85. return None
  86. config = os.path.splitext(info.filename)[0] + ".yaml"
  87. if os.path.exists(config):
  88. return config
  89. return None