sd_upscale.py 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293
  1. import math
  2. import modules.scripts as scripts
  3. import gradio as gr
  4. from PIL import Image
  5. from modules import processing, shared, sd_samplers, images, devices
  6. from modules.processing import Processed
  7. from modules.shared import opts, cmd_opts, state
  8. class Script(scripts.Script):
  9. def title(self):
  10. return "SD upscale"
  11. def show(self, is_img2img):
  12. return is_img2img
  13. def ui(self, is_img2img):
  14. info = gr.HTML("<p style=\"margin-bottom:0.75em\">Will upscale the image to twice the dimensions; use width and height sliders to set tile size</p>")
  15. overlap = gr.Slider(minimum=0, maximum=256, step=16, label='Tile overlap', value=64, visible=False)
  16. upscaler_index = gr.Radio(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index", visible=False)
  17. return [info, overlap, upscaler_index]
  18. def run(self, p, _, overlap, upscaler_index):
  19. processing.fix_seed(p)
  20. upscaler = shared.sd_upscalers[upscaler_index]
  21. p.extra_generation_params["SD upscale overlap"] = overlap
  22. p.extra_generation_params["SD upscale upscaler"] = upscaler.name
  23. initial_info = None
  24. seed = p.seed
  25. init_img = p.init_images[0]
  26. img = upscaler.scaler.upscale(init_img, 2, upscaler.data_path)
  27. devices.torch_gc()
  28. grid = images.split_grid(img, tile_w=p.width, tile_h=p.height, overlap=overlap)
  29. batch_size = p.batch_size
  30. upscale_count = p.n_iter
  31. p.n_iter = 1
  32. p.do_not_save_grid = True
  33. p.do_not_save_samples = True
  34. work = []
  35. for y, h, row in grid.tiles:
  36. for tiledata in row:
  37. work.append(tiledata[2])
  38. batch_count = math.ceil(len(work) / batch_size)
  39. state.job_count = batch_count * upscale_count
  40. print(f"SD upscaling will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)} per upscale in a total of {state.job_count} batches.")
  41. result_images = []
  42. for n in range(upscale_count):
  43. start_seed = seed + n
  44. p.seed = start_seed
  45. work_results = []
  46. for i in range(batch_count):
  47. p.batch_size = batch_size
  48. p.init_images = work[i*batch_size:(i+1)*batch_size]
  49. state.job = f"Batch {i + 1 + n * batch_count} out of {state.job_count}"
  50. processed = processing.process_images(p)
  51. if initial_info is None:
  52. initial_info = processed.info
  53. p.seed = processed.seed + 1
  54. work_results += processed.images
  55. image_index = 0
  56. for y, h, row in grid.tiles:
  57. for tiledata in row:
  58. tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height))
  59. image_index += 1
  60. combined_image = images.combine_grid(grid)
  61. result_images.append(combined_image)
  62. if opts.samples_save:
  63. images.save_image(combined_image, p.outpath_samples, "", start_seed, p.prompt, opts.samples_format, info=initial_info, p=p)
  64. processed = Processed(p, result_images, seed, initial_info)
  65. return processed