1234567891011121314151617181920212223242526272829303132 |
- import html
- import gradio as gr
- import modules.textual_inversion.textual_inversion as ti
- from modules import sd_hijack, shared
- def create_embedding(name, nvpt):
- filename = ti.create_embedding(name, nvpt)
- sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings()
- return gr.Dropdown.update(choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())), f"Created: {filename}", ""
- def train_embedding(*args):
- try:
- sd_hijack.undo_optimizations()
- embedding, filename = ti.train_embedding(*args)
- res = f"""
- Training {'interrupted' if shared.state.interrupted else 'finished'} after {embedding.step} steps.
- Embedding saved to {html.escape(filename)}
- """
- return res, ""
- except Exception:
- raise
- finally:
- sd_hijack.apply_optimizations()
|