processing.py 60 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314
  1. import json
  2. import logging
  3. import math
  4. import os
  5. import sys
  6. import hashlib
  7. import torch
  8. import numpy as np
  9. from PIL import Image, ImageFilter, ImageOps
  10. import random
  11. import cv2
  12. from skimage import exposure
  13. from typing import Any, Dict, List
  14. import modules.sd_hijack
  15. from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet
  16. from modules.sd_hijack import model_hijack
  17. from modules.shared import opts, cmd_opts, state
  18. import modules.shared as shared
  19. import modules.paths as paths
  20. import modules.face_restoration
  21. import modules.images as images
  22. import modules.styles
  23. import modules.sd_models as sd_models
  24. import modules.sd_vae as sd_vae
  25. from ldm.data.util import AddMiDaS
  26. from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
  27. from einops import repeat, rearrange
  28. from blendmodes.blend import blendLayers, BlendType
  29. # some of those options should not be changed at all because they would break the model, so I removed them from options.
  30. opt_C = 4
  31. opt_f = 8
  32. def setup_color_correction(image):
  33. logging.info("Calibrating color correction.")
  34. correction_target = cv2.cvtColor(np.asarray(image.copy()), cv2.COLOR_RGB2LAB)
  35. return correction_target
  36. def apply_color_correction(correction, original_image):
  37. logging.info("Applying color correction.")
  38. image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
  39. cv2.cvtColor(
  40. np.asarray(original_image),
  41. cv2.COLOR_RGB2LAB
  42. ),
  43. correction,
  44. channel_axis=2
  45. ), cv2.COLOR_LAB2RGB).astype("uint8"))
  46. image = blendLayers(image, original_image, BlendType.LUMINOSITY)
  47. return image
  48. def apply_overlay(image, paste_loc, index, overlays):
  49. if overlays is None or index >= len(overlays):
  50. return image
  51. overlay = overlays[index]
  52. if paste_loc is not None:
  53. x, y, w, h = paste_loc
  54. base_image = Image.new('RGBA', (overlay.width, overlay.height))
  55. image = images.resize_image(1, image, w, h)
  56. base_image.paste(image, (x, y))
  57. image = base_image
  58. image = image.convert('RGBA')
  59. image.alpha_composite(overlay)
  60. image = image.convert('RGB')
  61. return image
  62. def txt2img_image_conditioning(sd_model, x, width, height):
  63. if sd_model.model.conditioning_key in {'hybrid', 'concat'}: # Inpainting models
  64. # The "masked-image" in this case will just be all zeros since the entire image is masked.
  65. image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
  66. image_conditioning = sd_model.get_first_stage_encoding(sd_model.encode_first_stage(image_conditioning))
  67. # Add the fake full 1s mask to the first dimension.
  68. image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
  69. image_conditioning = image_conditioning.to(x.dtype)
  70. return image_conditioning
  71. elif sd_model.model.conditioning_key == "crossattn-adm": # UnCLIP models
  72. return x.new_zeros(x.shape[0], 2*sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device)
  73. else:
  74. # Dummy zero conditioning if we're not using inpainting or unclip models.
  75. # Still takes up a bit of memory, but no encoder call.
  76. # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
  77. return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
  78. class StableDiffusionProcessing:
  79. """
  80. The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
  81. """
  82. cached_uc = [None, None]
  83. cached_c = [None, None]
  84. def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
  85. if sampler_index is not None:
  86. print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
  87. self.outpath_samples: str = outpath_samples
  88. self.outpath_grids: str = outpath_grids
  89. self.prompt: str = prompt
  90. self.prompt_for_display: str = None
  91. self.negative_prompt: str = (negative_prompt or "")
  92. self.styles: list = styles or []
  93. self.seed: int = seed
  94. self.subseed: int = subseed
  95. self.subseed_strength: float = subseed_strength
  96. self.seed_resize_from_h: int = seed_resize_from_h
  97. self.seed_resize_from_w: int = seed_resize_from_w
  98. self.sampler_name: str = sampler_name
  99. self.batch_size: int = batch_size
  100. self.n_iter: int = n_iter
  101. self.steps: int = steps
  102. self.cfg_scale: float = cfg_scale
  103. self.width: int = width
  104. self.height: int = height
  105. self.restore_faces: bool = restore_faces
  106. self.tiling: bool = tiling
  107. self.do_not_save_samples: bool = do_not_save_samples
  108. self.do_not_save_grid: bool = do_not_save_grid
  109. self.extra_generation_params: dict = extra_generation_params or {}
  110. self.overlay_images = overlay_images
  111. self.eta = eta
  112. self.do_not_reload_embeddings = do_not_reload_embeddings
  113. self.paste_to = None
  114. self.color_corrections = None
  115. self.denoising_strength: float = denoising_strength
  116. self.sampler_noise_scheduler_override = None
  117. self.ddim_discretize = ddim_discretize or opts.ddim_discretize
  118. self.s_min_uncond = s_min_uncond or opts.s_min_uncond
  119. self.s_churn = s_churn or opts.s_churn
  120. self.s_tmin = s_tmin or opts.s_tmin
  121. self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
  122. self.s_noise = s_noise or opts.s_noise
  123. self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
  124. self.override_settings_restore_afterwards = override_settings_restore_afterwards
  125. self.is_using_inpainting_conditioning = False
  126. self.disable_extra_networks = False
  127. self.token_merging_ratio = 0
  128. self.token_merging_ratio_hr = 0
  129. if not seed_enable_extras:
  130. self.subseed = -1
  131. self.subseed_strength = 0
  132. self.seed_resize_from_h = 0
  133. self.seed_resize_from_w = 0
  134. self.scripts = None
  135. self.script_args = script_args
  136. self.all_prompts = None
  137. self.all_negative_prompts = None
  138. self.all_seeds = None
  139. self.all_subseeds = None
  140. self.iteration = 0
  141. self.is_hr_pass = False
  142. self.sampler = None
  143. self.prompts = None
  144. self.negative_prompts = None
  145. self.extra_network_data = None
  146. self.seeds = None
  147. self.subseeds = None
  148. self.step_multiplier = 1
  149. self.cached_uc = StableDiffusionProcessing.cached_uc
  150. self.cached_c = StableDiffusionProcessing.cached_c
  151. self.uc = None
  152. self.c = None
  153. @property
  154. def sd_model(self):
  155. return shared.sd_model
  156. def txt2img_image_conditioning(self, x, width=None, height=None):
  157. self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'}
  158. return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height)
  159. def depth2img_image_conditioning(self, source_image):
  160. # Use the AddMiDaS helper to Format our source image to suit the MiDaS model
  161. transformer = AddMiDaS(model_type="dpt_hybrid")
  162. transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")})
  163. midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device)
  164. midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size)
  165. conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image))
  166. conditioning = torch.nn.functional.interpolate(
  167. self.sd_model.depth_model(midas_in),
  168. size=conditioning_image.shape[2:],
  169. mode="bicubic",
  170. align_corners=False,
  171. )
  172. (depth_min, depth_max) = torch.aminmax(conditioning)
  173. conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1.
  174. return conditioning
  175. def edit_image_conditioning(self, source_image):
  176. conditioning_image = self.sd_model.encode_first_stage(source_image).mode()
  177. return conditioning_image
  178. def unclip_image_conditioning(self, source_image):
  179. c_adm = self.sd_model.embedder(source_image)
  180. if self.sd_model.noise_augmentor is not None:
  181. noise_level = 0 # TODO: Allow other noise levels?
  182. c_adm, noise_level_emb = self.sd_model.noise_augmentor(c_adm, noise_level=repeat(torch.tensor([noise_level]).to(c_adm.device), '1 -> b', b=c_adm.shape[0]))
  183. c_adm = torch.cat((c_adm, noise_level_emb), 1)
  184. return c_adm
  185. def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None):
  186. self.is_using_inpainting_conditioning = True
  187. # Handle the different mask inputs
  188. if image_mask is not None:
  189. if torch.is_tensor(image_mask):
  190. conditioning_mask = image_mask
  191. else:
  192. conditioning_mask = np.array(image_mask.convert("L"))
  193. conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
  194. conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
  195. # Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
  196. conditioning_mask = torch.round(conditioning_mask)
  197. else:
  198. conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:])
  199. # Create another latent image, this time with a masked version of the original input.
  200. # Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
  201. conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype)
  202. conditioning_image = torch.lerp(
  203. source_image,
  204. source_image * (1.0 - conditioning_mask),
  205. getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
  206. )
  207. # Encode the new masked image using first stage of network.
  208. conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
  209. # Create the concatenated conditioning tensor to be fed to `c_concat`
  210. conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
  211. conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
  212. image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
  213. image_conditioning = image_conditioning.to(shared.device).type(self.sd_model.dtype)
  214. return image_conditioning
  215. def img2img_image_conditioning(self, source_image, latent_image, image_mask=None):
  216. source_image = devices.cond_cast_float(source_image)
  217. # HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
  218. # identify itself with a field common to all models. The conditioning_key is also hybrid.
  219. if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
  220. return self.depth2img_image_conditioning(source_image)
  221. if self.sd_model.cond_stage_key == "edit":
  222. return self.edit_image_conditioning(source_image)
  223. if self.sampler.conditioning_key in {'hybrid', 'concat'}:
  224. return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
  225. if self.sampler.conditioning_key == "crossattn-adm":
  226. return self.unclip_image_conditioning(source_image)
  227. # Dummy zero conditioning if we're not using inpainting or depth model.
  228. return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
  229. def init(self, all_prompts, all_seeds, all_subseeds):
  230. pass
  231. def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
  232. raise NotImplementedError()
  233. def close(self):
  234. self.sampler = None
  235. self.c = None
  236. self.uc = None
  237. if not opts.experimental_persistent_cond_cache:
  238. StableDiffusionProcessing.cached_c = [None, None]
  239. StableDiffusionProcessing.cached_uc = [None, None]
  240. def get_token_merging_ratio(self, for_hr=False):
  241. if for_hr:
  242. return self.token_merging_ratio_hr or opts.token_merging_ratio_hr or self.token_merging_ratio or opts.token_merging_ratio
  243. return self.token_merging_ratio or opts.token_merging_ratio
  244. def setup_prompts(self):
  245. if type(self.prompt) == list:
  246. self.all_prompts = self.prompt
  247. else:
  248. self.all_prompts = self.batch_size * self.n_iter * [self.prompt]
  249. if type(self.negative_prompt) == list:
  250. self.all_negative_prompts = self.negative_prompt
  251. else:
  252. self.all_negative_prompts = self.batch_size * self.n_iter * [self.negative_prompt]
  253. self.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_prompts]
  254. self.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_negative_prompts]
  255. def get_conds_with_caching(self, function, required_prompts, steps, caches, extra_network_data):
  256. """
  257. Returns the result of calling function(shared.sd_model, required_prompts, steps)
  258. using a cache to store the result if the same arguments have been used before.
  259. cache is an array containing two elements. The first element is a tuple
  260. representing the previously used arguments, or None if no arguments
  261. have been used before. The second element is where the previously
  262. computed result is stored.
  263. caches is a list with items described above.
  264. """
  265. for cache in caches:
  266. if cache[0] is not None and (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info, extra_network_data) == cache[0]:
  267. return cache[1]
  268. cache = caches[0]
  269. with devices.autocast():
  270. cache[1] = function(shared.sd_model, required_prompts, steps)
  271. cache[0] = (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info, extra_network_data)
  272. return cache[1]
  273. def setup_conds(self):
  274. sampler_config = sd_samplers.find_sampler_config(self.sampler_name)
  275. self.step_multiplier = 2 if sampler_config and sampler_config.options.get("second_order", False) else 1
  276. self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.negative_prompts, self.steps * self.step_multiplier, [self.cached_uc], self.extra_network_data)
  277. self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.prompts, self.steps * self.step_multiplier, [self.cached_c], self.extra_network_data)
  278. def parse_extra_network_prompts(self):
  279. self.prompts, self.extra_network_data = extra_networks.parse_prompts(self.prompts)
  280. class Processed:
  281. def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
  282. self.images = images_list
  283. self.prompt = p.prompt
  284. self.negative_prompt = p.negative_prompt
  285. self.seed = seed
  286. self.subseed = subseed
  287. self.subseed_strength = p.subseed_strength
  288. self.info = info
  289. self.comments = comments
  290. self.width = p.width
  291. self.height = p.height
  292. self.sampler_name = p.sampler_name
  293. self.cfg_scale = p.cfg_scale
  294. self.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
  295. self.steps = p.steps
  296. self.batch_size = p.batch_size
  297. self.restore_faces = p.restore_faces
  298. self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None
  299. self.sd_model_hash = shared.sd_model.sd_model_hash
  300. self.seed_resize_from_w = p.seed_resize_from_w
  301. self.seed_resize_from_h = p.seed_resize_from_h
  302. self.denoising_strength = getattr(p, 'denoising_strength', None)
  303. self.extra_generation_params = p.extra_generation_params
  304. self.index_of_first_image = index_of_first_image
  305. self.styles = p.styles
  306. self.job_timestamp = state.job_timestamp
  307. self.clip_skip = opts.CLIP_stop_at_last_layers
  308. self.token_merging_ratio = p.token_merging_ratio
  309. self.token_merging_ratio_hr = p.token_merging_ratio_hr
  310. self.eta = p.eta
  311. self.ddim_discretize = p.ddim_discretize
  312. self.s_churn = p.s_churn
  313. self.s_tmin = p.s_tmin
  314. self.s_tmax = p.s_tmax
  315. self.s_noise = p.s_noise
  316. self.s_min_uncond = p.s_min_uncond
  317. self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
  318. self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0]
  319. self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
  320. self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
  321. self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
  322. self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning
  323. self.all_prompts = all_prompts or p.all_prompts or [self.prompt]
  324. self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
  325. self.all_seeds = all_seeds or p.all_seeds or [self.seed]
  326. self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
  327. self.infotexts = infotexts or [info]
  328. def js(self):
  329. obj = {
  330. "prompt": self.all_prompts[0],
  331. "all_prompts": self.all_prompts,
  332. "negative_prompt": self.all_negative_prompts[0],
  333. "all_negative_prompts": self.all_negative_prompts,
  334. "seed": self.seed,
  335. "all_seeds": self.all_seeds,
  336. "subseed": self.subseed,
  337. "all_subseeds": self.all_subseeds,
  338. "subseed_strength": self.subseed_strength,
  339. "width": self.width,
  340. "height": self.height,
  341. "sampler_name": self.sampler_name,
  342. "cfg_scale": self.cfg_scale,
  343. "steps": self.steps,
  344. "batch_size": self.batch_size,
  345. "restore_faces": self.restore_faces,
  346. "face_restoration_model": self.face_restoration_model,
  347. "sd_model_hash": self.sd_model_hash,
  348. "seed_resize_from_w": self.seed_resize_from_w,
  349. "seed_resize_from_h": self.seed_resize_from_h,
  350. "denoising_strength": self.denoising_strength,
  351. "extra_generation_params": self.extra_generation_params,
  352. "index_of_first_image": self.index_of_first_image,
  353. "infotexts": self.infotexts,
  354. "styles": self.styles,
  355. "job_timestamp": self.job_timestamp,
  356. "clip_skip": self.clip_skip,
  357. "is_using_inpainting_conditioning": self.is_using_inpainting_conditioning,
  358. }
  359. return json.dumps(obj)
  360. def infotext(self, p: StableDiffusionProcessing, index):
  361. return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
  362. def get_token_merging_ratio(self, for_hr=False):
  363. return self.token_merging_ratio_hr if for_hr else self.token_merging_ratio
  364. # from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
  365. def slerp(val, low, high):
  366. low_norm = low/torch.norm(low, dim=1, keepdim=True)
  367. high_norm = high/torch.norm(high, dim=1, keepdim=True)
  368. dot = (low_norm*high_norm).sum(1)
  369. if dot.mean() > 0.9995:
  370. return low * val + high * (1 - val)
  371. omega = torch.acos(dot)
  372. so = torch.sin(omega)
  373. res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
  374. return res
  375. def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
  376. eta_noise_seed_delta = opts.eta_noise_seed_delta or 0
  377. xs = []
  378. # if we have multiple seeds, this means we are working with batch size>1; this then
  379. # enables the generation of additional tensors with noise that the sampler will use during its processing.
  380. # Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
  381. # produce the same images as with two batches [100], [101].
  382. if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or eta_noise_seed_delta > 0):
  383. sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
  384. else:
  385. sampler_noises = None
  386. for i, seed in enumerate(seeds):
  387. noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)
  388. subnoise = None
  389. if subseeds is not None:
  390. subseed = 0 if i >= len(subseeds) else subseeds[i]
  391. subnoise = devices.randn(subseed, noise_shape)
  392. # randn results depend on device; gpu and cpu get different results for same seed;
  393. # the way I see it, it's better to do this on CPU, so that everyone gets same result;
  394. # but the original script had it like this, so I do not dare change it for now because
  395. # it will break everyone's seeds.
  396. noise = devices.randn(seed, noise_shape)
  397. if subnoise is not None:
  398. noise = slerp(subseed_strength, noise, subnoise)
  399. if noise_shape != shape:
  400. x = devices.randn(seed, shape)
  401. dx = (shape[2] - noise_shape[2]) // 2
  402. dy = (shape[1] - noise_shape[1]) // 2
  403. w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx
  404. h = noise_shape[1] if dy >= 0 else noise_shape[1] + 2 * dy
  405. tx = 0 if dx < 0 else dx
  406. ty = 0 if dy < 0 else dy
  407. dx = max(-dx, 0)
  408. dy = max(-dy, 0)
  409. x[:, ty:ty+h, tx:tx+w] = noise[:, dy:dy+h, dx:dx+w]
  410. noise = x
  411. if sampler_noises is not None:
  412. cnt = p.sampler.number_of_needed_noises(p)
  413. if eta_noise_seed_delta > 0:
  414. torch.manual_seed(seed + eta_noise_seed_delta)
  415. for j in range(cnt):
  416. sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
  417. xs.append(noise)
  418. if sampler_noises is not None:
  419. p.sampler.sampler_noises = [torch.stack(n).to(shared.device) for n in sampler_noises]
  420. x = torch.stack(xs).to(shared.device)
  421. return x
  422. def decode_first_stage(model, x):
  423. with devices.autocast(disable=x.dtype == devices.dtype_vae):
  424. x = model.decode_first_stage(x)
  425. return x
  426. def get_fixed_seed(seed):
  427. if seed is None or seed == '' or seed == -1:
  428. return int(random.randrange(4294967294))
  429. return seed
  430. def fix_seed(p):
  431. p.seed = get_fixed_seed(p.seed)
  432. p.subseed = get_fixed_seed(p.subseed)
  433. def program_version():
  434. import launch
  435. res = launch.git_tag()
  436. if res == "<none>":
  437. res = None
  438. return res
  439. def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0):
  440. index = position_in_batch + iteration * p.batch_size
  441. clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
  442. enable_hr = getattr(p, 'enable_hr', False)
  443. token_merging_ratio = p.get_token_merging_ratio()
  444. token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True)
  445. uses_ensd = opts.eta_noise_seed_delta != 0
  446. if uses_ensd:
  447. uses_ensd = sd_samplers_common.is_sampler_using_eta_noise_seed_delta(p)
  448. generation_params = {
  449. "Steps": p.steps,
  450. "Sampler": p.sampler_name,
  451. "CFG scale": p.cfg_scale,
  452. "Image CFG scale": getattr(p, 'image_cfg_scale', None),
  453. "Seed": all_seeds[index],
  454. "Face restoration": (opts.face_restoration_model if p.restore_faces else None),
  455. "Size": f"{p.width}x{p.height}",
  456. "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
  457. "Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
  458. "Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
  459. "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
  460. "Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
  461. "Denoising strength": getattr(p, 'denoising_strength', None),
  462. "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
  463. "Clip skip": None if clip_skip <= 1 else clip_skip,
  464. "ENSD": opts.eta_noise_seed_delta if uses_ensd else None,
  465. "Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio,
  466. "Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
  467. "Init image hash": getattr(p, 'init_img_hash', None),
  468. "RNG": opts.randn_source if opts.randn_source != "GPU" else None,
  469. "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
  470. **p.extra_generation_params,
  471. "Version": program_version() if opts.add_version_to_infotext else None,
  472. }
  473. generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
  474. negative_prompt_text = f"\nNegative prompt: {p.all_negative_prompts[index]}" if p.all_negative_prompts[index] else ""
  475. return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
  476. def process_images(p: StableDiffusionProcessing) -> Processed:
  477. if p.scripts is not None:
  478. p.scripts.before_process(p)
  479. stored_opts = {k: opts.data[k] for k in p.override_settings.keys()}
  480. try:
  481. # if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint
  482. if sd_models.checkpoint_alisases.get(p.override_settings.get('sd_model_checkpoint')) is None:
  483. p.override_settings.pop('sd_model_checkpoint', None)
  484. sd_models.reload_model_weights()
  485. for k, v in p.override_settings.items():
  486. setattr(opts, k, v)
  487. if k == 'sd_model_checkpoint':
  488. sd_models.reload_model_weights()
  489. if k == 'sd_vae':
  490. sd_vae.reload_vae_weights()
  491. sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio())
  492. res = process_images_inner(p)
  493. finally:
  494. sd_models.apply_token_merging(p.sd_model, 0)
  495. # restore opts to original state
  496. if p.override_settings_restore_afterwards:
  497. for k, v in stored_opts.items():
  498. setattr(opts, k, v)
  499. if k == 'sd_vae':
  500. sd_vae.reload_vae_weights()
  501. return res
  502. def process_images_inner(p: StableDiffusionProcessing) -> Processed:
  503. """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
  504. if type(p.prompt) == list:
  505. assert(len(p.prompt) > 0)
  506. else:
  507. assert p.prompt is not None
  508. devices.torch_gc()
  509. seed = get_fixed_seed(p.seed)
  510. subseed = get_fixed_seed(p.subseed)
  511. modules.sd_hijack.model_hijack.apply_circular(p.tiling)
  512. modules.sd_hijack.model_hijack.clear_comments()
  513. comments = {}
  514. p.setup_prompts()
  515. if type(seed) == list:
  516. p.all_seeds = seed
  517. else:
  518. p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
  519. if type(subseed) == list:
  520. p.all_subseeds = subseed
  521. else:
  522. p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
  523. def infotext(iteration=0, position_in_batch=0):
  524. return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)
  525. if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
  526. model_hijack.embedding_db.load_textual_inversion_embeddings()
  527. if p.scripts is not None:
  528. p.scripts.process(p)
  529. infotexts = []
  530. output_images = []
  531. with torch.no_grad(), p.sd_model.ema_scope():
  532. with devices.autocast():
  533. p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
  534. # for OSX, loading the model during sampling changes the generated picture, so it is loaded here
  535. if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN":
  536. sd_vae_approx.model()
  537. sd_unet.apply_unet()
  538. if state.job_count == -1:
  539. state.job_count = p.n_iter
  540. for n in range(p.n_iter):
  541. p.iteration = n
  542. if state.skipped:
  543. state.skipped = False
  544. if state.interrupted:
  545. break
  546. p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
  547. p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
  548. p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
  549. p.subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
  550. if p.scripts is not None:
  551. p.scripts.before_process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
  552. if len(p.prompts) == 0:
  553. break
  554. p.parse_extra_network_prompts()
  555. if not p.disable_extra_networks:
  556. with devices.autocast():
  557. extra_networks.activate(p, p.extra_network_data)
  558. if p.scripts is not None:
  559. p.scripts.process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
  560. # params.txt should be saved after scripts.process_batch, since the
  561. # infotext could be modified by that callback
  562. # Example: a wildcard processed by process_batch sets an extra model
  563. # strength, which is saved as "Model Strength: 1.0" in the infotext
  564. if n == 0:
  565. with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
  566. processed = Processed(p, [], p.seed, "")
  567. file.write(processed.infotext(p, 0))
  568. p.setup_conds()
  569. if len(model_hijack.comments) > 0:
  570. for comment in model_hijack.comments:
  571. comments[comment] = 1
  572. if p.n_iter > 1:
  573. shared.state.job = f"Batch {n+1} out of {p.n_iter}"
  574. with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
  575. samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
  576. x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))]
  577. for x in x_samples_ddim:
  578. devices.test_for_nans(x, "vae")
  579. x_samples_ddim = torch.stack(x_samples_ddim).float()
  580. x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
  581. del samples_ddim
  582. if lowvram.is_enabled(shared.sd_model):
  583. lowvram.send_everything_to_cpu()
  584. devices.torch_gc()
  585. if p.scripts is not None:
  586. p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
  587. for i, x_sample in enumerate(x_samples_ddim):
  588. p.batch_index = i
  589. x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
  590. x_sample = x_sample.astype(np.uint8)
  591. if p.restore_faces:
  592. if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
  593. images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-face-restoration")
  594. devices.torch_gc()
  595. x_sample = modules.face_restoration.restore_faces(x_sample)
  596. devices.torch_gc()
  597. image = Image.fromarray(x_sample)
  598. if p.scripts is not None:
  599. pp = scripts.PostprocessImageArgs(image)
  600. p.scripts.postprocess_image(p, pp)
  601. image = pp.image
  602. if p.color_corrections is not None and i < len(p.color_corrections):
  603. if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
  604. image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
  605. images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
  606. image = apply_color_correction(p.color_corrections[i], image)
  607. image = apply_overlay(image, p.paste_to, i, p.overlay_images)
  608. if opts.samples_save and not p.do_not_save_samples:
  609. images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p)
  610. text = infotext(n, i)
  611. infotexts.append(text)
  612. if opts.enable_pnginfo:
  613. image.info["parameters"] = text
  614. output_images.append(image)
  615. if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay and any([opts.save_mask, opts.save_mask_composite, opts.return_mask, opts.return_mask_composite]):
  616. image_mask = p.mask_for_overlay.convert('RGB')
  617. image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
  618. if opts.save_mask:
  619. images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask")
  620. if opts.save_mask_composite:
  621. images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask-composite")
  622. if opts.return_mask:
  623. output_images.append(image_mask)
  624. if opts.return_mask_composite:
  625. output_images.append(image_mask_composite)
  626. del x_samples_ddim
  627. devices.torch_gc()
  628. state.nextjob()
  629. p.color_corrections = None
  630. index_of_first_image = 0
  631. unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple
  632. if (opts.return_grid or opts.grid_save) and not p.do_not_save_grid and not unwanted_grid_because_of_img_count:
  633. grid = images.image_grid(output_images, p.batch_size)
  634. if opts.return_grid:
  635. text = infotext()
  636. infotexts.insert(0, text)
  637. if opts.enable_pnginfo:
  638. grid.info["parameters"] = text
  639. output_images.insert(0, grid)
  640. index_of_first_image = 1
  641. if opts.grid_save:
  642. images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
  643. if not p.disable_extra_networks and p.extra_network_data:
  644. extra_networks.deactivate(p, p.extra_network_data)
  645. devices.torch_gc()
  646. res = Processed(
  647. p,
  648. images_list=output_images,
  649. seed=p.all_seeds[0],
  650. info=infotext(),
  651. comments="".join(f"{comment}\n" for comment in comments),
  652. subseed=p.all_subseeds[0],
  653. index_of_first_image=index_of_first_image,
  654. infotexts=infotexts,
  655. )
  656. if p.scripts is not None:
  657. p.scripts.postprocess(p, res)
  658. return res
  659. def old_hires_fix_first_pass_dimensions(width, height):
  660. """old algorithm for auto-calculating first pass size"""
  661. desired_pixel_count = 512 * 512
  662. actual_pixel_count = width * height
  663. scale = math.sqrt(desired_pixel_count / actual_pixel_count)
  664. width = math.ceil(scale * width / 64) * 64
  665. height = math.ceil(scale * height / 64) * 64
  666. return width, height
  667. class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
  668. sampler = None
  669. cached_hr_uc = [None, None]
  670. cached_hr_c = [None, None]
  671. def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, hr_second_pass_steps: int = 0, hr_resize_x: int = 0, hr_resize_y: int = 0, hr_sampler_name: str = None, hr_prompt: str = '', hr_negative_prompt: str = '', **kwargs):
  672. super().__init__(**kwargs)
  673. self.enable_hr = enable_hr
  674. self.denoising_strength = denoising_strength
  675. self.hr_scale = hr_scale
  676. self.hr_upscaler = hr_upscaler
  677. self.hr_second_pass_steps = hr_second_pass_steps
  678. self.hr_resize_x = hr_resize_x
  679. self.hr_resize_y = hr_resize_y
  680. self.hr_upscale_to_x = hr_resize_x
  681. self.hr_upscale_to_y = hr_resize_y
  682. self.hr_sampler_name = hr_sampler_name
  683. self.hr_prompt = hr_prompt
  684. self.hr_negative_prompt = hr_negative_prompt
  685. self.all_hr_prompts = None
  686. self.all_hr_negative_prompts = None
  687. if firstphase_width != 0 or firstphase_height != 0:
  688. self.hr_upscale_to_x = self.width
  689. self.hr_upscale_to_y = self.height
  690. self.width = firstphase_width
  691. self.height = firstphase_height
  692. self.truncate_x = 0
  693. self.truncate_y = 0
  694. self.applied_old_hires_behavior_to = None
  695. self.hr_prompts = None
  696. self.hr_negative_prompts = None
  697. self.hr_extra_network_data = None
  698. self.cached_hr_uc = StableDiffusionProcessingTxt2Img.cached_hr_uc
  699. self.cached_hr_c = StableDiffusionProcessingTxt2Img.cached_hr_c
  700. self.hr_c = None
  701. self.hr_uc = None
  702. def init(self, all_prompts, all_seeds, all_subseeds):
  703. if self.enable_hr:
  704. if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
  705. self.extra_generation_params["Hires sampler"] = self.hr_sampler_name
  706. if tuple(self.hr_prompt) != tuple(self.prompt):
  707. self.extra_generation_params["Hires prompt"] = self.hr_prompt
  708. if tuple(self.hr_negative_prompt) != tuple(self.negative_prompt):
  709. self.extra_generation_params["Hires negative prompt"] = self.hr_negative_prompt
  710. if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height):
  711. self.hr_resize_x = self.width
  712. self.hr_resize_y = self.height
  713. self.hr_upscale_to_x = self.width
  714. self.hr_upscale_to_y = self.height
  715. self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height)
  716. self.applied_old_hires_behavior_to = (self.width, self.height)
  717. if self.hr_resize_x == 0 and self.hr_resize_y == 0:
  718. self.extra_generation_params["Hires upscale"] = self.hr_scale
  719. self.hr_upscale_to_x = int(self.width * self.hr_scale)
  720. self.hr_upscale_to_y = int(self.height * self.hr_scale)
  721. else:
  722. self.extra_generation_params["Hires resize"] = f"{self.hr_resize_x}x{self.hr_resize_y}"
  723. if self.hr_resize_y == 0:
  724. self.hr_upscale_to_x = self.hr_resize_x
  725. self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
  726. elif self.hr_resize_x == 0:
  727. self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
  728. self.hr_upscale_to_y = self.hr_resize_y
  729. else:
  730. target_w = self.hr_resize_x
  731. target_h = self.hr_resize_y
  732. src_ratio = self.width / self.height
  733. dst_ratio = self.hr_resize_x / self.hr_resize_y
  734. if src_ratio < dst_ratio:
  735. self.hr_upscale_to_x = self.hr_resize_x
  736. self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
  737. else:
  738. self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
  739. self.hr_upscale_to_y = self.hr_resize_y
  740. self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f
  741. self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f
  742. # special case: the user has chosen to do nothing
  743. if self.hr_upscale_to_x == self.width and self.hr_upscale_to_y == self.height:
  744. self.enable_hr = False
  745. self.denoising_strength = None
  746. self.extra_generation_params.pop("Hires upscale", None)
  747. self.extra_generation_params.pop("Hires resize", None)
  748. return
  749. if not state.processing_has_refined_job_count:
  750. if state.job_count == -1:
  751. state.job_count = self.n_iter
  752. shared.total_tqdm.updateTotal((self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count)
  753. state.job_count = state.job_count * 2
  754. state.processing_has_refined_job_count = True
  755. if self.hr_second_pass_steps:
  756. self.extra_generation_params["Hires steps"] = self.hr_second_pass_steps
  757. if self.hr_upscaler is not None:
  758. self.extra_generation_params["Hires upscaler"] = self.hr_upscaler
  759. def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
  760. self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
  761. latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
  762. if self.enable_hr and latent_scale_mode is None:
  763. if not any(x.name == self.hr_upscaler for x in shared.sd_upscalers):
  764. raise Exception(f"could not find upscaler named {self.hr_upscaler}")
  765. x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
  766. samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
  767. if not self.enable_hr:
  768. return samples
  769. self.is_hr_pass = True
  770. target_width = self.hr_upscale_to_x
  771. target_height = self.hr_upscale_to_y
  772. def save_intermediate(image, index):
  773. """saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images"""
  774. if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix:
  775. return
  776. if not isinstance(image, Image.Image):
  777. image = sd_samplers.sample_to_image(image, index, approximation=0)
  778. info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index)
  779. images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, suffix="-before-highres-fix")
  780. if latent_scale_mode is not None:
  781. for i in range(samples.shape[0]):
  782. save_intermediate(samples, i)
  783. samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=latent_scale_mode["mode"], antialias=latent_scale_mode["antialias"])
  784. # Avoid making the inpainting conditioning unless necessary as
  785. # this does need some extra compute to decode / encode the image again.
  786. if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0:
  787. image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples)
  788. else:
  789. image_conditioning = self.txt2img_image_conditioning(samples)
  790. else:
  791. decoded_samples = decode_first_stage(self.sd_model, samples)
  792. lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
  793. batch_images = []
  794. for i, x_sample in enumerate(lowres_samples):
  795. x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
  796. x_sample = x_sample.astype(np.uint8)
  797. image = Image.fromarray(x_sample)
  798. save_intermediate(image, i)
  799. image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler)
  800. image = np.array(image).astype(np.float32) / 255.0
  801. image = np.moveaxis(image, 2, 0)
  802. batch_images.append(image)
  803. decoded_samples = torch.from_numpy(np.array(batch_images))
  804. decoded_samples = decoded_samples.to(shared.device)
  805. decoded_samples = 2. * decoded_samples - 1.
  806. samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
  807. image_conditioning = self.img2img_image_conditioning(decoded_samples, samples)
  808. shared.state.nextjob()
  809. img2img_sampler_name = self.hr_sampler_name or self.sampler_name
  810. if self.sampler_name in ['PLMS', 'UniPC']: # PLMS/UniPC do not support img2img so we just silently switch to DDIM
  811. img2img_sampler_name = 'DDIM'
  812. self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model)
  813. samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]
  814. noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self)
  815. # GC now before running the next img2img to prevent running out of memory
  816. x = None
  817. devices.torch_gc()
  818. if not self.disable_extra_networks:
  819. with devices.autocast():
  820. extra_networks.activate(self, self.hr_extra_network_data)
  821. with devices.autocast():
  822. self.calculate_hr_conds()
  823. sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True))
  824. samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
  825. sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio())
  826. self.is_hr_pass = False
  827. return samples
  828. def close(self):
  829. super().close()
  830. self.hr_c = None
  831. self.hr_uc = None
  832. if not opts.experimental_persistent_cond_cache:
  833. StableDiffusionProcessingTxt2Img.cached_hr_uc = [None, None]
  834. StableDiffusionProcessingTxt2Img.cached_hr_c = [None, None]
  835. def setup_prompts(self):
  836. super().setup_prompts()
  837. if not self.enable_hr:
  838. return
  839. if self.hr_prompt == '':
  840. self.hr_prompt = self.prompt
  841. if self.hr_negative_prompt == '':
  842. self.hr_negative_prompt = self.negative_prompt
  843. if type(self.hr_prompt) == list:
  844. self.all_hr_prompts = self.hr_prompt
  845. else:
  846. self.all_hr_prompts = self.batch_size * self.n_iter * [self.hr_prompt]
  847. if type(self.hr_negative_prompt) == list:
  848. self.all_hr_negative_prompts = self.hr_negative_prompt
  849. else:
  850. self.all_hr_negative_prompts = self.batch_size * self.n_iter * [self.hr_negative_prompt]
  851. self.all_hr_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_hr_prompts]
  852. self.all_hr_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_hr_negative_prompts]
  853. def calculate_hr_conds(self):
  854. if self.hr_c is not None:
  855. return
  856. self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.hr_negative_prompts, self.steps * self.step_multiplier, [self.cached_hr_uc, self.cached_uc], self.hr_extra_network_data)
  857. self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.hr_prompts, self.steps * self.step_multiplier, [self.cached_hr_c, self.cached_c], self.hr_extra_network_data)
  858. def setup_conds(self):
  859. super().setup_conds()
  860. self.hr_uc = None
  861. self.hr_c = None
  862. if self.enable_hr:
  863. if shared.opts.hires_fix_use_firstpass_conds:
  864. self.calculate_hr_conds()
  865. elif lowvram.is_enabled(shared.sd_model): # if in lowvram mode, we need to calculate conds right away, before the cond NN is unloaded
  866. with devices.autocast():
  867. extra_networks.activate(self, self.hr_extra_network_data)
  868. self.calculate_hr_conds()
  869. with devices.autocast():
  870. extra_networks.activate(self, self.extra_network_data)
  871. def parse_extra_network_prompts(self):
  872. res = super().parse_extra_network_prompts()
  873. if self.enable_hr:
  874. self.hr_prompts = self.all_hr_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
  875. self.hr_negative_prompts = self.all_hr_negative_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
  876. self.hr_prompts, self.hr_extra_network_data = extra_networks.parse_prompts(self.hr_prompts)
  877. return res
  878. class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
  879. sampler = None
  880. def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: float = None, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs):
  881. super().__init__(**kwargs)
  882. self.init_images = init_images
  883. self.resize_mode: int = resize_mode
  884. self.denoising_strength: float = denoising_strength
  885. self.image_cfg_scale: float = image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None
  886. self.init_latent = None
  887. self.image_mask = mask
  888. self.latent_mask = None
  889. self.mask_for_overlay = None
  890. self.mask_blur = mask_blur
  891. self.inpainting_fill = inpainting_fill
  892. self.inpaint_full_res = inpaint_full_res
  893. self.inpaint_full_res_padding = inpaint_full_res_padding
  894. self.inpainting_mask_invert = inpainting_mask_invert
  895. self.initial_noise_multiplier = opts.initial_noise_multiplier if initial_noise_multiplier is None else initial_noise_multiplier
  896. self.mask = None
  897. self.nmask = None
  898. self.image_conditioning = None
  899. def init(self, all_prompts, all_seeds, all_subseeds):
  900. self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
  901. crop_region = None
  902. image_mask = self.image_mask
  903. if image_mask is not None:
  904. image_mask = image_mask.convert('L')
  905. if self.inpainting_mask_invert:
  906. image_mask = ImageOps.invert(image_mask)
  907. if self.mask_blur > 0:
  908. image_mask = image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
  909. if self.inpaint_full_res:
  910. self.mask_for_overlay = image_mask
  911. mask = image_mask.convert('L')
  912. crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
  913. crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
  914. x1, y1, x2, y2 = crop_region
  915. mask = mask.crop(crop_region)
  916. image_mask = images.resize_image(2, mask, self.width, self.height)
  917. self.paste_to = (x1, y1, x2-x1, y2-y1)
  918. else:
  919. image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
  920. np_mask = np.array(image_mask)
  921. np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
  922. self.mask_for_overlay = Image.fromarray(np_mask)
  923. self.overlay_images = []
  924. latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
  925. add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
  926. if add_color_corrections:
  927. self.color_corrections = []
  928. imgs = []
  929. for img in self.init_images:
  930. # Save init image
  931. if opts.save_init_img:
  932. self.init_img_hash = hashlib.md5(img.tobytes()).hexdigest()
  933. images.save_image(img, path=opts.outdir_init_images, basename=None, forced_filename=self.init_img_hash, save_to_dirs=False)
  934. image = images.flatten(img, opts.img2img_background_color)
  935. if crop_region is None and self.resize_mode != 3:
  936. image = images.resize_image(self.resize_mode, image, self.width, self.height)
  937. if image_mask is not None:
  938. image_masked = Image.new('RGBa', (image.width, image.height))
  939. image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
  940. self.overlay_images.append(image_masked.convert('RGBA'))
  941. # crop_region is not None if we are doing inpaint full res
  942. if crop_region is not None:
  943. image = image.crop(crop_region)
  944. image = images.resize_image(2, image, self.width, self.height)
  945. if image_mask is not None:
  946. if self.inpainting_fill != 1:
  947. image = masking.fill(image, latent_mask)
  948. if add_color_corrections:
  949. self.color_corrections.append(setup_color_correction(image))
  950. image = np.array(image).astype(np.float32) / 255.0
  951. image = np.moveaxis(image, 2, 0)
  952. imgs.append(image)
  953. if len(imgs) == 1:
  954. batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
  955. if self.overlay_images is not None:
  956. self.overlay_images = self.overlay_images * self.batch_size
  957. if self.color_corrections is not None and len(self.color_corrections) == 1:
  958. self.color_corrections = self.color_corrections * self.batch_size
  959. elif len(imgs) <= self.batch_size:
  960. self.batch_size = len(imgs)
  961. batch_images = np.array(imgs)
  962. else:
  963. raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")
  964. image = torch.from_numpy(batch_images)
  965. image = 2. * image - 1.
  966. image = image.to(shared.device)
  967. self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
  968. if self.resize_mode == 3:
  969. self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
  970. if image_mask is not None:
  971. init_mask = latent_mask
  972. latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
  973. latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
  974. latmask = latmask[0]
  975. latmask = np.around(latmask)
  976. latmask = np.tile(latmask[None], (4, 1, 1))
  977. self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
  978. self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)
  979. # this needs to be fixed to be done in sample() using actual seeds for batches
  980. if self.inpainting_fill == 2:
  981. self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
  982. elif self.inpainting_fill == 3:
  983. self.init_latent = self.init_latent * self.mask
  984. self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, image_mask)
  985. def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
  986. x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
  987. if self.initial_noise_multiplier != 1.0:
  988. self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier
  989. x *= self.initial_noise_multiplier
  990. samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
  991. if self.mask is not None:
  992. samples = samples * self.nmask + self.init_latent * self.mask
  993. del x
  994. devices.torch_gc()
  995. return samples
  996. def get_token_merging_ratio(self, for_hr=False):
  997. return self.token_merging_ratio or ("token_merging_ratio" in self.override_settings and opts.token_merging_ratio) or opts.token_merging_ratio_img2img or opts.token_merging_ratio