loopback.py 3.7 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798
  1. import numpy as np
  2. from tqdm import trange
  3. import modules.scripts as scripts
  4. import gradio as gr
  5. from modules import processing, shared, sd_samplers, images
  6. from modules.processing import Processed
  7. from modules.sd_samplers import samplers
  8. from modules.shared import opts, cmd_opts, state
  9. from modules import deepbooru
  10. class Script(scripts.Script):
  11. def title(self):
  12. return "Loopback"
  13. def show(self, is_img2img):
  14. return is_img2img
  15. def ui(self, is_img2img):
  16. loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4, elem_id=self.elem_id("loops"))
  17. denoising_strength_change_factor = gr.Slider(minimum=0.9, maximum=1.1, step=0.01, label='Denoising strength change factor', value=1, elem_id=self.elem_id("denoising_strength_change_factor"))
  18. append_interrogation = gr.Dropdown(label="Append interrogated prompt at each iteration", choices=["None", "CLIP", "DeepBooru"], value="None")
  19. return [loops, denoising_strength_change_factor, append_interrogation]
  20. def run(self, p, loops, denoising_strength_change_factor, append_interrogation):
  21. processing.fix_seed(p)
  22. batch_count = p.n_iter
  23. p.extra_generation_params = {
  24. "Denoising strength change factor": denoising_strength_change_factor,
  25. }
  26. p.batch_size = 1
  27. p.n_iter = 1
  28. output_images, info = None, None
  29. initial_seed = None
  30. initial_info = None
  31. grids = []
  32. all_images = []
  33. original_init_image = p.init_images
  34. original_prompt = p.prompt
  35. state.job_count = loops * batch_count
  36. initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
  37. for n in range(batch_count):
  38. history = []
  39. # Reset to original init image at the start of each batch
  40. p.init_images = original_init_image
  41. for i in range(loops):
  42. p.n_iter = 1
  43. p.batch_size = 1
  44. p.do_not_save_grid = True
  45. if opts.img2img_color_correction:
  46. p.color_corrections = initial_color_corrections
  47. if append_interrogation != "None":
  48. p.prompt = original_prompt + ", " if original_prompt != "" else ""
  49. if append_interrogation == "CLIP":
  50. p.prompt += shared.interrogator.interrogate(p.init_images[0])
  51. elif append_interrogation == "DeepBooru":
  52. p.prompt += deepbooru.model.tag(p.init_images[0])
  53. state.job = f"Iteration {i + 1}/{loops}, batch {n + 1}/{batch_count}"
  54. processed = processing.process_images(p)
  55. if initial_seed is None:
  56. initial_seed = processed.seed
  57. initial_info = processed.info
  58. init_img = processed.images[0]
  59. p.init_images = [init_img]
  60. p.seed = processed.seed + 1
  61. p.denoising_strength = min(max(p.denoising_strength * denoising_strength_change_factor, 0.1), 1)
  62. history.append(processed.images[0])
  63. grid = images.image_grid(history, rows=1)
  64. if opts.grid_save:
  65. images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
  66. grids.append(grid)
  67. all_images += history
  68. if opts.return_grid:
  69. all_images = grids + all_images
  70. processed = Processed(p, all_images, initial_seed, initial_info)
  71. return processed