123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- import math
- import os
- import sys
- import traceback
- import modules.scripts as scripts
- import gradio as gr
- from modules.processing import Processed, process_images
- from PIL import Image
- from modules.shared import opts, cmd_opts, state
- class Script(scripts.Script):
- def title(self):
- return "Batch processing"
- def show(self, is_img2img):
- return is_img2img
- def ui(self, is_img2img):
- input_dir = gr.Textbox(label="Input directory", lines=1)
- output_dir = gr.Textbox(label="Output directory", lines=1)
- return [input_dir, output_dir]
- def run(self, p, input_dir, output_dir):
- images = [file for file in [os.path.join(input_dir, x) for x in os.listdir(input_dir)] if os.path.isfile(file)]
- batch_count = math.ceil(len(images) / p.batch_size)
- print(f"Will process {len(images)} images in {batch_count} batches.")
- p.batch_count = 1
- p.do_not_save_grid = True
- p.do_not_save_samples = True
- state.job_count = batch_count
- for batch_no in range(batch_count):
- batch_images = []
- for path in images[batch_no*p.batch_size:(batch_no+1)*p.batch_size]:
- try:
- img = Image.open(path)
- batch_images.append((img, path))
- except:
- print(f"Error processing {path}:", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
- if len(batch_images) == 0:
- continue
- state.job = f"{batch_no} out of {batch_count}: {batch_images[0][1]}"
- p.init_images = [x[0] for x in batch_images]
- proc = process_images(p)
- for image, (_, path) in zip(proc.images, batch_images):
- filename = os.path.basename(path)
- image.save(os.path.join(output_dir, filename))
- return Processed(p, [], p.seed, "")
|