12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- import torch
- import network
- from lyco_helpers import factorization
- from einops import rearrange
- class ModuleTypeOFT(network.ModuleType):
- def create_module(self, net: network.Network, weights: network.NetworkWeights):
- if all(x in weights.w for x in ["oft_blocks"]) or all(x in weights.w for x in ["oft_diag"]):
- return NetworkModuleOFT(net, weights)
- return None
- # Supports both kohya-ss' implementation of COFT https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
- # and KohakuBlueleaf's implementation of OFT/COFT https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/diag_oft.py
- class NetworkModuleOFT(network.NetworkModule):
- def __init__(self, net: network.Network, weights: network.NetworkWeights):
- super().__init__(net, weights)
- self.lin_module = None
- self.org_module: list[torch.Module] = [self.sd_module]
- self.scale = 1.0
- # kohya-ss
- if "oft_blocks" in weights.w.keys():
- self.is_kohya = True
- self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size)
- self.alpha = weights.w["alpha"] # alpha is constraint
- self.dim = self.oft_blocks.shape[0] # lora dim
- # LyCORIS
- elif "oft_diag" in weights.w.keys():
- self.is_kohya = False
- self.oft_blocks = weights.w["oft_diag"]
- # self.alpha is unused
- self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size)
- is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]
- is_conv = type(self.sd_module) in [torch.nn.Conv2d]
- is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] # unsupported
- if is_linear:
- self.out_dim = self.sd_module.out_features
- elif is_conv:
- self.out_dim = self.sd_module.out_channels
- elif is_other_linear:
- self.out_dim = self.sd_module.embed_dim
- if self.is_kohya:
- self.constraint = self.alpha * self.out_dim
- self.num_blocks = self.dim
- self.block_size = self.out_dim // self.dim
- else:
- self.constraint = None
- self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
- def calc_updown(self, orig_weight):
- oft_blocks = self.oft_blocks.to(orig_weight.device)
- eye = torch.eye(self.block_size, device=oft_blocks.device)
- if self.is_kohya:
- block_Q = oft_blocks - oft_blocks.transpose(1, 2) # ensure skew-symmetric orthogonal matrix
- norm_Q = torch.norm(block_Q.flatten())
- new_norm_Q = torch.clamp(norm_Q, max=self.constraint.to(oft_blocks.device))
- block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
- oft_blocks = torch.matmul(eye + block_Q, (eye - block_Q).float().inverse())
- R = oft_blocks.to(orig_weight.device)
- # This errors out for MultiheadAttention, might need to be handled up-stream
- merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
- merged_weight = torch.einsum(
- 'k n m, k n ... -> k m ...',
- R,
- merged_weight
- )
- merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
- updown = merged_weight.to(orig_weight.device) - orig_weight.to(merged_weight.dtype)
- output_shape = orig_weight.shape
- return self.finalize_updown(updown, orig_weight, output_shape)
|