123456789101112 |
- import torch
- def sgm_uniform(n, sigma_min, sigma_max, inner_model, device):
- start = inner_model.sigma_to_t(torch.tensor(sigma_max))
- end = inner_model.sigma_to_t(torch.tensor(sigma_min))
- sigs = [
- inner_model.t_to_sigma(ts)
- for ts in torch.linspace(start, end, n)[:-1]
- ]
- sigs += [0.0]
- return torch.FloatTensor(sigs).to(device)
|