123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532 |
- import base64
- import io
- import time
- import datetime
- import uvicorn
- from threading import Lock
- from io import BytesIO
- from gradio.processing_utils import decode_base64_to_file
- from fastapi import APIRouter, Depends, FastAPI, HTTPException, Request, Response
- from fastapi.security import HTTPBasic, HTTPBasicCredentials
- from secrets import compare_digest
- import modules.shared as shared
- from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui
- from modules.api.models import *
- from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
- from modules.extras import run_extras
- from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
- from modules.textual_inversion.preprocess import preprocess
- from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
- from PIL import PngImagePlugin,Image
- from modules.sd_models import checkpoints_list, find_checkpoint_config
- from modules.realesrgan_model import get_realesrgan_models
- from modules import devices
- from typing import List
- def upscaler_to_index(name: str):
- try:
- return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
- except:
- raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in sd_upscalers])}")
- def script_name_to_index(name, scripts):
- try:
- return [script.title().lower() for script in scripts].index(name.lower())
- except:
- raise HTTPException(status_code=422, detail=f"Script '{name}' not found")
- def validate_sampler_name(name):
- config = sd_samplers.all_samplers_map.get(name, None)
- if config is None:
- raise HTTPException(status_code=404, detail="Sampler not found")
- return name
- def setUpscalers(req: dict):
- reqDict = vars(req)
- reqDict['extras_upscaler_1'] = upscaler_to_index(req.upscaler_1)
- reqDict['extras_upscaler_2'] = upscaler_to_index(req.upscaler_2)
- reqDict.pop('upscaler_1')
- reqDict.pop('upscaler_2')
- return reqDict
- def decode_base64_to_image(encoding):
- if encoding.startswith("data:image/"):
- encoding = encoding.split(";")[1].split(",")[1]
- return Image.open(BytesIO(base64.b64decode(encoding)))
- def encode_pil_to_base64(image):
- with io.BytesIO() as output_bytes:
- # Copy any text-only metadata
- use_metadata = False
- metadata = PngImagePlugin.PngInfo()
- for key, value in image.info.items():
- if isinstance(key, str) and isinstance(value, str):
- metadata.add_text(key, value)
- use_metadata = True
- image.save(
- output_bytes, "PNG", pnginfo=(metadata if use_metadata else None)
- )
- bytes_data = output_bytes.getvalue()
- return base64.b64encode(bytes_data)
- def api_middleware(app: FastAPI):
- @app.middleware("http")
- async def log_and_time(req: Request, call_next):
- ts = time.time()
- res: Response = await call_next(req)
- duration = str(round(time.time() - ts, 4))
- res.headers["X-Process-Time"] = duration
- endpoint = req.scope.get('path', 'err')
- if shared.cmd_opts.api_log and endpoint.startswith('/sdapi'):
- print('API {t} {code} {prot}/{ver} {method} {endpoint} {cli} {duration}'.format(
- t = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"),
- code = res.status_code,
- ver = req.scope.get('http_version', '0.0'),
- cli = req.scope.get('client', ('0:0.0.0', 0))[0],
- prot = req.scope.get('scheme', 'err'),
- method = req.scope.get('method', 'err'),
- endpoint = endpoint,
- duration = duration,
- ))
- return res
- class Api:
- def __init__(self, app: FastAPI, queue_lock: Lock):
- if shared.cmd_opts.api_auth:
- self.credentials = dict()
- for auth in shared.cmd_opts.api_auth.split(","):
- user, password = auth.split(":")
- self.credentials[user] = password
- self.router = APIRouter()
- self.app = app
- self.queue_lock = queue_lock
- api_middleware(self.app)
- self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
- self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
- self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
- self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
- self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse)
- self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse)
- self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"])
- self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"])
- self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"])
- self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel)
- self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
- self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel)
- self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem])
- self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem])
- self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem])
- self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem])
- self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem])
- self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem])
- self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[PromptStyleItem])
- self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=EmbeddingsResponse)
- self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"])
- self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=CreateResponse)
- self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=CreateResponse)
- self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=PreprocessResponse)
- self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse)
- self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse)
- self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=MemoryResponse)
- def add_api_route(self, path: str, endpoint, **kwargs):
- if shared.cmd_opts.api_auth:
- return self.app.add_api_route(path, endpoint, dependencies=[Depends(self.auth)], **kwargs)
- return self.app.add_api_route(path, endpoint, **kwargs)
- def auth(self, credentials: HTTPBasicCredentials = Depends(HTTPBasic())):
- if credentials.username in self.credentials:
- if compare_digest(credentials.password, self.credentials[credentials.username]):
- return True
- raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})
- def get_script(self, script_name, script_runner):
- if script_name is None:
- return None, None
- if not script_runner.scripts:
- script_runner.initialize_scripts(False)
- ui.create_ui()
- script_idx = script_name_to_index(script_name, script_runner.selectable_scripts)
- script = script_runner.selectable_scripts[script_idx]
- return script, script_idx
- def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
- script, script_idx = self.get_script(txt2imgreq.script_name, scripts.scripts_txt2img)
- populate = txt2imgreq.copy(update={ # Override __init__ params
- "sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
- "do_not_save_samples": True,
- "do_not_save_grid": True
- }
- )
- if populate.sampler_name:
- populate.sampler_index = None # prevent a warning later on
- args = vars(populate)
- args.pop('script_name', None)
- with self.queue_lock:
- p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
- shared.state.begin()
- if script is not None:
- p.outpath_grids = opts.outdir_txt2img_grids
- p.outpath_samples = opts.outdir_txt2img_samples
- p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
- processed = scripts.scripts_txt2img.run(p, *p.script_args)
- else:
- processed = process_images(p)
- shared.state.end()
- b64images = list(map(encode_pil_to_base64, processed.images))
- return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
- def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
- init_images = img2imgreq.init_images
- if init_images is None:
- raise HTTPException(status_code=404, detail="Init image not found")
- script, script_idx = self.get_script(img2imgreq.script_name, scripts.scripts_img2img)
- mask = img2imgreq.mask
- if mask:
- mask = decode_base64_to_image(mask)
- populate = img2imgreq.copy(update={ # Override __init__ params
- "sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index),
- "do_not_save_samples": True,
- "do_not_save_grid": True,
- "mask": mask
- }
- )
- if populate.sampler_name:
- populate.sampler_index = None # prevent a warning later on
- args = vars(populate)
- args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
- args.pop('script_name', None)
- with self.queue_lock:
- p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
- p.init_images = [decode_base64_to_image(x) for x in init_images]
- shared.state.begin()
- if script is not None:
- p.outpath_grids = opts.outdir_img2img_grids
- p.outpath_samples = opts.outdir_img2img_samples
- p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
- processed = scripts.scripts_img2img.run(p, *p.script_args)
- else:
- processed = process_images(p)
- shared.state.end()
- b64images = list(map(encode_pil_to_base64, processed.images))
- if not img2imgreq.include_init_images:
- img2imgreq.init_images = None
- img2imgreq.mask = None
- return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js())
- def extras_single_image_api(self, req: ExtrasSingleImageRequest):
- reqDict = setUpscalers(req)
- reqDict['image'] = decode_base64_to_image(reqDict['image'])
- with self.queue_lock:
- result = run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict)
- return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])
- def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
- reqDict = setUpscalers(req)
- def prepareFiles(file):
- file = decode_base64_to_file(file.data, file_path=file.name)
- file.orig_name = file.name
- return file
- reqDict['image_folder'] = list(map(prepareFiles, reqDict['imageList']))
- reqDict.pop('imageList')
- with self.queue_lock:
- result = run_extras(extras_mode=1, image="", input_dir="", output_dir="", save_output=False, **reqDict)
- return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
- def pnginfoapi(self, req: PNGInfoRequest):
- if(not req.image.strip()):
- return PNGInfoResponse(info="")
- image = decode_base64_to_image(req.image.strip())
- if image is None:
- return PNGInfoResponse(info="")
- geninfo, items = images.read_info_from_image(image)
- if geninfo is None:
- geninfo = ""
- items = {**{'parameters': geninfo}, **items}
- return PNGInfoResponse(info=geninfo, items=items)
- def progressapi(self, req: ProgressRequest = Depends()):
- # copy from check_progress_call of ui.py
- if shared.state.job_count == 0:
- return ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo)
- # avoid dividing zero
- progress = 0.01
- if shared.state.job_count > 0:
- progress += shared.state.job_no / shared.state.job_count
- if shared.state.sampling_steps > 0:
- progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps
- time_since_start = time.time() - shared.state.time_start
- eta = (time_since_start/progress)
- eta_relative = eta-time_since_start
- progress = min(progress, 1)
- shared.state.set_current_image()
- current_image = None
- if shared.state.current_image and not req.skip_current_image:
- current_image = encode_pil_to_base64(shared.state.current_image)
- return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo)
- def interrogateapi(self, interrogatereq: InterrogateRequest):
- image_b64 = interrogatereq.image
- if image_b64 is None:
- raise HTTPException(status_code=404, detail="Image not found")
- img = decode_base64_to_image(image_b64)
- img = img.convert('RGB')
- # Override object param
- with self.queue_lock:
- if interrogatereq.model == "clip":
- processed = shared.interrogator.interrogate(img)
- elif interrogatereq.model == "deepdanbooru":
- processed = deepbooru.model.tag(img)
- else:
- raise HTTPException(status_code=404, detail="Model not found")
- return InterrogateResponse(caption=processed)
- def interruptapi(self):
- shared.state.interrupt()
- return {}
- def skip(self):
- shared.state.skip()
- def get_config(self):
- options = {}
- for key in shared.opts.data.keys():
- metadata = shared.opts.data_labels.get(key)
- if(metadata is not None):
- options.update({key: shared.opts.data.get(key, shared.opts.data_labels.get(key).default)})
- else:
- options.update({key: shared.opts.data.get(key, None)})
- return options
- def set_config(self, req: Dict[str, Any]):
- for k, v in req.items():
- shared.opts.set(k, v)
- shared.opts.save(shared.config_filename)
- return
- def get_cmd_flags(self):
- return vars(shared.cmd_opts)
- def get_samplers(self):
- return [{"name": sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers]
- def get_upscalers(self):
- upscalers = []
- for upscaler in shared.sd_upscalers:
- u = upscaler.scaler
- upscalers.append({"name":u.name, "model_name":u.model_name, "model_path":u.model_path, "model_url":u.model_url})
- return upscalers
- def get_sd_models(self):
- return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config(x)} for x in checkpoints_list.values()]
- def get_hypernetworks(self):
- return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks]
- def get_face_restorers(self):
- return [{"name":x.name(), "cmd_dir": getattr(x, "cmd_dir", None)} for x in shared.face_restorers]
- def get_realesrgan_models(self):
- return [{"name":x.name,"path":x.data_path, "scale":x.scale} for x in get_realesrgan_models(None)]
- def get_prompt_styles(self):
- styleList = []
- for k in shared.prompt_styles.styles:
- style = shared.prompt_styles.styles[k]
- styleList.append({"name":style[0], "prompt": style[1], "negative_prompt": style[2]})
- return styleList
- def get_embeddings(self):
- db = sd_hijack.model_hijack.embedding_db
- def convert_embedding(embedding):
- return {
- "step": embedding.step,
- "sd_checkpoint": embedding.sd_checkpoint,
- "sd_checkpoint_name": embedding.sd_checkpoint_name,
- "shape": embedding.shape,
- "vectors": embedding.vectors,
- }
- def convert_embeddings(embeddings):
- return {embedding.name: convert_embedding(embedding) for embedding in embeddings.values()}
- return {
- "loaded": convert_embeddings(db.word_embeddings),
- "skipped": convert_embeddings(db.skipped_embeddings),
- }
- def refresh_checkpoints(self):
- shared.refresh_checkpoints()
- def create_embedding(self, args: dict):
- try:
- shared.state.begin()
- filename = create_embedding(**args) # create empty embedding
- sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used
- shared.state.end()
- return CreateResponse(info = "create embedding filename: {filename}".format(filename = filename))
- except AssertionError as e:
- shared.state.end()
- return TrainResponse(info = "create embedding error: {error}".format(error = e))
- def create_hypernetwork(self, args: dict):
- try:
- shared.state.begin()
- filename = create_hypernetwork(**args) # create empty embedding
- shared.state.end()
- return CreateResponse(info = "create hypernetwork filename: {filename}".format(filename = filename))
- except AssertionError as e:
- shared.state.end()
- return TrainResponse(info = "create hypernetwork error: {error}".format(error = e))
- def preprocess(self, args: dict):
- try:
- shared.state.begin()
- preprocess(**args) # quick operation unless blip/booru interrogation is enabled
- shared.state.end()
- return PreprocessResponse(info = 'preprocess complete')
- except KeyError as e:
- shared.state.end()
- return PreprocessResponse(info = "preprocess error: invalid token: {error}".format(error = e))
- except AssertionError as e:
- shared.state.end()
- return PreprocessResponse(info = "preprocess error: {error}".format(error = e))
- except FileNotFoundError as e:
- shared.state.end()
- return PreprocessResponse(info = 'preprocess error: {error}'.format(error = e))
- def train_embedding(self, args: dict):
- try:
- shared.state.begin()
- apply_optimizations = shared.opts.training_xattention_optimizations
- error = None
- filename = ''
- if not apply_optimizations:
- sd_hijack.undo_optimizations()
- try:
- embedding, filename = train_embedding(**args) # can take a long time to complete
- except Exception as e:
- error = e
- finally:
- if not apply_optimizations:
- sd_hijack.apply_optimizations()
- shared.state.end()
- return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error))
- except AssertionError as msg:
- shared.state.end()
- return TrainResponse(info = "train embedding error: {msg}".format(msg = msg))
- def train_hypernetwork(self, args: dict):
- try:
- shared.state.begin()
- shared.loaded_hypernetworks = []
- apply_optimizations = shared.opts.training_xattention_optimizations
- error = None
- filename = ''
- if not apply_optimizations:
- sd_hijack.undo_optimizations()
- try:
- hypernetwork, filename = train_hypernetwork(*args)
- except Exception as e:
- error = e
- finally:
- shared.sd_model.cond_stage_model.to(devices.device)
- shared.sd_model.first_stage_model.to(devices.device)
- if not apply_optimizations:
- sd_hijack.apply_optimizations()
- shared.state.end()
- return TrainResponse(info="train embedding complete: filename: {filename} error: {error}".format(filename=filename, error=error))
- except AssertionError as msg:
- shared.state.end()
- return TrainResponse(info="train embedding error: {error}".format(error=error))
- def get_memory(self):
- try:
- import os, psutil
- process = psutil.Process(os.getpid())
- res = process.memory_info() # only rss is cross-platform guaranteed so we dont rely on other values
- ram_total = 100 * res.rss / process.memory_percent() # and total memory is calculated as actual value is not cross-platform safe
- ram = { 'free': ram_total - res.rss, 'used': res.rss, 'total': ram_total }
- except Exception as err:
- ram = { 'error': f'{err}' }
- try:
- import torch
- if torch.cuda.is_available():
- s = torch.cuda.mem_get_info()
- system = { 'free': s[0], 'used': s[1] - s[0], 'total': s[1] }
- s = dict(torch.cuda.memory_stats(shared.device))
- allocated = { 'current': s['allocated_bytes.all.current'], 'peak': s['allocated_bytes.all.peak'] }
- reserved = { 'current': s['reserved_bytes.all.current'], 'peak': s['reserved_bytes.all.peak'] }
- active = { 'current': s['active_bytes.all.current'], 'peak': s['active_bytes.all.peak'] }
- inactive = { 'current': s['inactive_split_bytes.all.current'], 'peak': s['inactive_split_bytes.all.peak'] }
- warnings = { 'retries': s['num_alloc_retries'], 'oom': s['num_ooms'] }
- cuda = {
- 'system': system,
- 'active': active,
- 'allocated': allocated,
- 'reserved': reserved,
- 'inactive': inactive,
- 'events': warnings,
- }
- else:
- cuda = { 'error': 'unavailable' }
- except Exception as err:
- cuda = { 'error': f'{err}' }
- return MemoryResponse(ram = ram, cuda = cuda)
- def launch(self, server_name, port):
- self.app.include_router(self.router)
- uvicorn.run(self.app, host=server_name, port=port)
|