networks.py 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682
  1. import gradio as gr
  2. import logging
  3. import os
  4. import re
  5. import lora_patches
  6. import network
  7. import network_lora
  8. import network_glora
  9. import network_hada
  10. import network_ia3
  11. import network_lokr
  12. import network_full
  13. import network_norm
  14. import network_oft
  15. import torch
  16. from typing import Union
  17. from modules import shared, devices, sd_models, errors, scripts, sd_hijack
  18. import modules.textual_inversion.textual_inversion as textual_inversion
  19. from lora_logger import logger
  20. module_types = [
  21. network_lora.ModuleTypeLora(),
  22. network_hada.ModuleTypeHada(),
  23. network_ia3.ModuleTypeIa3(),
  24. network_lokr.ModuleTypeLokr(),
  25. network_full.ModuleTypeFull(),
  26. network_norm.ModuleTypeNorm(),
  27. network_glora.ModuleTypeGLora(),
  28. network_oft.ModuleTypeOFT(),
  29. ]
  30. re_digits = re.compile(r"\d+")
  31. re_x_proj = re.compile(r"(.*)_([qkv]_proj)$")
  32. re_compiled = {}
  33. suffix_conversion = {
  34. "attentions": {},
  35. "resnets": {
  36. "conv1": "in_layers_2",
  37. "conv2": "out_layers_3",
  38. "norm1": "in_layers_0",
  39. "norm2": "out_layers_0",
  40. "time_emb_proj": "emb_layers_1",
  41. "conv_shortcut": "skip_connection",
  42. }
  43. }
  44. def convert_diffusers_name_to_compvis(key, is_sd2):
  45. def match(match_list, regex_text):
  46. regex = re_compiled.get(regex_text)
  47. if regex is None:
  48. regex = re.compile(regex_text)
  49. re_compiled[regex_text] = regex
  50. r = re.match(regex, key)
  51. if not r:
  52. return False
  53. match_list.clear()
  54. match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
  55. return True
  56. m = []
  57. if match(m, r"lora_unet_conv_in(.*)"):
  58. return f'diffusion_model_input_blocks_0_0{m[0]}'
  59. if match(m, r"lora_unet_conv_out(.*)"):
  60. return f'diffusion_model_out_2{m[0]}'
  61. if match(m, r"lora_unet_time_embedding_linear_(\d+)(.*)"):
  62. return f"diffusion_model_time_embed_{m[0] * 2 - 2}{m[1]}"
  63. if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
  64. suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
  65. return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
  66. if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"):
  67. suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2])
  68. return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}"
  69. if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
  70. suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
  71. return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
  72. if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"):
  73. return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op"
  74. if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"):
  75. return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv"
  76. if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"):
  77. if is_sd2:
  78. if 'mlp_fc1' in m[1]:
  79. return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
  80. elif 'mlp_fc2' in m[1]:
  81. return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
  82. else:
  83. return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
  84. return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
  85. if match(m, r"lora_te2_text_model_encoder_layers_(\d+)_(.+)"):
  86. if 'mlp_fc1' in m[1]:
  87. return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
  88. elif 'mlp_fc2' in m[1]:
  89. return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
  90. else:
  91. return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
  92. return key
  93. def assign_network_names_to_compvis_modules(sd_model):
  94. network_layer_mapping = {}
  95. if shared.sd_model.is_sdxl:
  96. for i, embedder in enumerate(shared.sd_model.conditioner.embedders):
  97. if not hasattr(embedder, 'wrapped'):
  98. continue
  99. for name, module in embedder.wrapped.named_modules():
  100. network_name = f'{i}_{name.replace(".", "_")}'
  101. network_layer_mapping[network_name] = module
  102. module.network_layer_name = network_name
  103. else:
  104. cond_stage_model = getattr(shared.sd_model.cond_stage_model, 'wrapped', shared.sd_model.cond_stage_model)
  105. for name, module in cond_stage_model.named_modules():
  106. network_name = name.replace(".", "_")
  107. network_layer_mapping[network_name] = module
  108. module.network_layer_name = network_name
  109. for name, module in shared.sd_model.model.named_modules():
  110. network_name = name.replace(".", "_")
  111. network_layer_mapping[network_name] = module
  112. module.network_layer_name = network_name
  113. sd_model.network_layer_mapping = network_layer_mapping
  114. class BundledTIHash(str):
  115. def __init__(self, hash_str):
  116. self.hash = hash_str
  117. def __str__(self):
  118. return self.hash if shared.opts.lora_bundled_ti_to_infotext else ''
  119. def load_network(name, network_on_disk):
  120. net = network.Network(name, network_on_disk)
  121. net.mtime = os.path.getmtime(network_on_disk.filename)
  122. sd = sd_models.read_state_dict(network_on_disk.filename)
  123. # this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0
  124. if not hasattr(shared.sd_model, 'network_layer_mapping'):
  125. assign_network_names_to_compvis_modules(shared.sd_model)
  126. keys_failed_to_match = {}
  127. is_sd2 = 'model_transformer_resblocks' in shared.sd_model.network_layer_mapping
  128. matched_networks = {}
  129. bundle_embeddings = {}
  130. for key_network, weight in sd.items():
  131. key_network_without_network_parts, _, network_part = key_network.partition(".")
  132. if key_network_without_network_parts == "bundle_emb":
  133. emb_name, vec_name = network_part.split(".", 1)
  134. emb_dict = bundle_embeddings.get(emb_name, {})
  135. if vec_name.split('.')[0] == 'string_to_param':
  136. _, k2 = vec_name.split('.', 1)
  137. emb_dict['string_to_param'] = {k2: weight}
  138. else:
  139. emb_dict[vec_name] = weight
  140. bundle_embeddings[emb_name] = emb_dict
  141. key = convert_diffusers_name_to_compvis(key_network_without_network_parts, is_sd2)
  142. sd_module = shared.sd_model.network_layer_mapping.get(key, None)
  143. if sd_module is None:
  144. m = re_x_proj.match(key)
  145. if m:
  146. sd_module = shared.sd_model.network_layer_mapping.get(m.group(1), None)
  147. # SDXL loras seem to already have correct compvis keys, so only need to replace "lora_unet" with "diffusion_model"
  148. if sd_module is None and "lora_unet" in key_network_without_network_parts:
  149. key = key_network_without_network_parts.replace("lora_unet", "diffusion_model")
  150. sd_module = shared.sd_model.network_layer_mapping.get(key, None)
  151. elif sd_module is None and "lora_te1_text_model" in key_network_without_network_parts:
  152. key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
  153. sd_module = shared.sd_model.network_layer_mapping.get(key, None)
  154. # some SD1 Loras also have correct compvis keys
  155. if sd_module is None:
  156. key = key_network_without_network_parts.replace("lora_te1_text_model", "transformer_text_model")
  157. sd_module = shared.sd_model.network_layer_mapping.get(key, None)
  158. # kohya_ss OFT module
  159. elif sd_module is None and "oft_unet" in key_network_without_network_parts:
  160. key = key_network_without_network_parts.replace("oft_unet", "diffusion_model")
  161. sd_module = shared.sd_model.network_layer_mapping.get(key, None)
  162. # KohakuBlueLeaf OFT module
  163. if sd_module is None and "oft_diag" in key:
  164. key = key_network_without_network_parts.replace("lora_unet", "diffusion_model")
  165. key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
  166. sd_module = shared.sd_model.network_layer_mapping.get(key, None)
  167. if sd_module is None:
  168. keys_failed_to_match[key_network] = key
  169. continue
  170. if key not in matched_networks:
  171. matched_networks[key] = network.NetworkWeights(network_key=key_network, sd_key=key, w={}, sd_module=sd_module)
  172. matched_networks[key].w[network_part] = weight
  173. for key, weights in matched_networks.items():
  174. net_module = None
  175. for nettype in module_types:
  176. net_module = nettype.create_module(net, weights)
  177. if net_module is not None:
  178. break
  179. if net_module is None:
  180. raise AssertionError(f"Could not find a module type (out of {', '.join([x.__class__.__name__ for x in module_types])}) that would accept those keys: {', '.join(weights.w)}")
  181. net.modules[key] = net_module
  182. embeddings = {}
  183. for emb_name, data in bundle_embeddings.items():
  184. embedding = textual_inversion.create_embedding_from_data(data, emb_name, filename=network_on_disk.filename + "/" + emb_name)
  185. embedding.loaded = None
  186. embedding.shorthash = BundledTIHash(name)
  187. embeddings[emb_name] = embedding
  188. net.bundle_embeddings = embeddings
  189. if keys_failed_to_match:
  190. logging.debug(f"Network {network_on_disk.filename} didn't match keys: {keys_failed_to_match}")
  191. return net
  192. def purge_networks_from_memory():
  193. while len(networks_in_memory) > shared.opts.lora_in_memory_limit and len(networks_in_memory) > 0:
  194. name = next(iter(networks_in_memory))
  195. networks_in_memory.pop(name, None)
  196. devices.torch_gc()
  197. def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
  198. emb_db = sd_hijack.model_hijack.embedding_db
  199. already_loaded = {}
  200. for net in loaded_networks:
  201. if net.name in names:
  202. already_loaded[net.name] = net
  203. for emb_name, embedding in net.bundle_embeddings.items():
  204. if embedding.loaded:
  205. emb_db.register_embedding_by_name(None, shared.sd_model, emb_name)
  206. loaded_networks.clear()
  207. unavailable_networks = []
  208. for name in names:
  209. if name.lower() in forbidden_network_aliases and available_networks.get(name) is None:
  210. unavailable_networks.append(name)
  211. elif available_network_aliases.get(name) is None:
  212. unavailable_networks.append(name)
  213. if unavailable_networks:
  214. update_available_networks_by_names(unavailable_networks)
  215. networks_on_disk = [available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None) for name in names]
  216. if any(x is None for x in networks_on_disk):
  217. list_available_networks()
  218. networks_on_disk = [available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None) for name in names]
  219. failed_to_load_networks = []
  220. for i, (network_on_disk, name) in enumerate(zip(networks_on_disk, names)):
  221. net = already_loaded.get(name, None)
  222. if network_on_disk is not None:
  223. if net is None:
  224. net = networks_in_memory.get(name)
  225. if net is None or os.path.getmtime(network_on_disk.filename) > net.mtime:
  226. try:
  227. net = load_network(name, network_on_disk)
  228. networks_in_memory.pop(name, None)
  229. networks_in_memory[name] = net
  230. except Exception as e:
  231. errors.display(e, f"loading network {network_on_disk.filename}")
  232. continue
  233. net.mentioned_name = name
  234. network_on_disk.read_hash()
  235. if net is None:
  236. failed_to_load_networks.append(name)
  237. logging.info(f"Couldn't find network with name {name}")
  238. continue
  239. net.te_multiplier = te_multipliers[i] if te_multipliers else 1.0
  240. net.unet_multiplier = unet_multipliers[i] if unet_multipliers else 1.0
  241. net.dyn_dim = dyn_dims[i] if dyn_dims else 1.0
  242. loaded_networks.append(net)
  243. for emb_name, embedding in net.bundle_embeddings.items():
  244. if embedding.loaded is None and emb_name in emb_db.word_embeddings:
  245. logger.warning(
  246. f'Skip bundle embedding: "{emb_name}"'
  247. ' as it was already loaded from embeddings folder'
  248. )
  249. continue
  250. embedding.loaded = False
  251. if emb_db.expected_shape == -1 or emb_db.expected_shape == embedding.shape:
  252. embedding.loaded = True
  253. emb_db.register_embedding(embedding, shared.sd_model)
  254. else:
  255. emb_db.skipped_embeddings[name] = embedding
  256. if failed_to_load_networks:
  257. lora_not_found_message = f'Lora not found: {", ".join(failed_to_load_networks)}'
  258. sd_hijack.model_hijack.comments.append(lora_not_found_message)
  259. if shared.opts.lora_not_found_warning_console:
  260. print(f'\n{lora_not_found_message}\n')
  261. if shared.opts.lora_not_found_gradio_warning:
  262. gr.Warning(lora_not_found_message)
  263. purge_networks_from_memory()
  264. def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention]):
  265. weights_backup = getattr(self, "network_weights_backup", None)
  266. bias_backup = getattr(self, "network_bias_backup", None)
  267. if weights_backup is None and bias_backup is None:
  268. return
  269. if weights_backup is not None:
  270. if isinstance(self, torch.nn.MultiheadAttention):
  271. self.in_proj_weight.copy_(weights_backup[0])
  272. self.out_proj.weight.copy_(weights_backup[1])
  273. else:
  274. self.weight.copy_(weights_backup)
  275. if bias_backup is not None:
  276. if isinstance(self, torch.nn.MultiheadAttention):
  277. self.out_proj.bias.copy_(bias_backup)
  278. else:
  279. self.bias.copy_(bias_backup)
  280. else:
  281. if isinstance(self, torch.nn.MultiheadAttention):
  282. self.out_proj.bias = None
  283. else:
  284. self.bias = None
  285. def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention]):
  286. """
  287. Applies the currently selected set of networks to the weights of torch layer self.
  288. If weights already have this particular set of networks applied, does nothing.
  289. If not, restores original weights from backup and alters weights according to networks.
  290. """
  291. network_layer_name = getattr(self, 'network_layer_name', None)
  292. if network_layer_name is None:
  293. return
  294. current_names = getattr(self, "network_current_names", ())
  295. wanted_names = tuple((x.name, x.te_multiplier, x.unet_multiplier, x.dyn_dim) for x in loaded_networks)
  296. weights_backup = getattr(self, "network_weights_backup", None)
  297. if weights_backup is None and wanted_names != ():
  298. if current_names != ():
  299. raise RuntimeError("no backup weights found and current weights are not unchanged")
  300. if isinstance(self, torch.nn.MultiheadAttention):
  301. weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True))
  302. else:
  303. weights_backup = self.weight.to(devices.cpu, copy=True)
  304. self.network_weights_backup = weights_backup
  305. bias_backup = getattr(self, "network_bias_backup", None)
  306. if bias_backup is None and wanted_names != ():
  307. if isinstance(self, torch.nn.MultiheadAttention) and self.out_proj.bias is not None:
  308. bias_backup = self.out_proj.bias.to(devices.cpu, copy=True)
  309. elif getattr(self, 'bias', None) is not None:
  310. bias_backup = self.bias.to(devices.cpu, copy=True)
  311. else:
  312. bias_backup = None
  313. # Unlike weight which always has value, some modules don't have bias.
  314. # Only report if bias is not None and current bias are not unchanged.
  315. if bias_backup is not None and current_names != ():
  316. raise RuntimeError("no backup bias found and current bias are not unchanged")
  317. self.network_bias_backup = bias_backup
  318. if current_names != wanted_names:
  319. network_restore_weights_from_backup(self)
  320. for net in loaded_networks:
  321. module = net.modules.get(network_layer_name, None)
  322. if module is not None and hasattr(self, 'weight'):
  323. try:
  324. with torch.no_grad():
  325. if getattr(self, 'fp16_weight', None) is None:
  326. weight = self.weight
  327. bias = self.bias
  328. else:
  329. weight = self.fp16_weight.clone().to(self.weight.device)
  330. bias = getattr(self, 'fp16_bias', None)
  331. if bias is not None:
  332. bias = bias.clone().to(self.bias.device)
  333. updown, ex_bias = module.calc_updown(weight)
  334. if len(weight.shape) == 4 and weight.shape[1] == 9:
  335. # inpainting model. zero pad updown to make channel[1] 4 to 9
  336. updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5))
  337. self.weight.copy_((weight.to(dtype=updown.dtype) + updown).to(dtype=self.weight.dtype))
  338. if ex_bias is not None and hasattr(self, 'bias'):
  339. if self.bias is None:
  340. self.bias = torch.nn.Parameter(ex_bias).to(self.weight.dtype)
  341. else:
  342. self.bias.copy_((bias + ex_bias).to(dtype=self.bias.dtype))
  343. except RuntimeError as e:
  344. logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
  345. extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
  346. continue
  347. module_q = net.modules.get(network_layer_name + "_q_proj", None)
  348. module_k = net.modules.get(network_layer_name + "_k_proj", None)
  349. module_v = net.modules.get(network_layer_name + "_v_proj", None)
  350. module_out = net.modules.get(network_layer_name + "_out_proj", None)
  351. if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
  352. try:
  353. with torch.no_grad():
  354. # Send "real" orig_weight into MHA's lora module
  355. qw, kw, vw = self.in_proj_weight.chunk(3, 0)
  356. updown_q, _ = module_q.calc_updown(qw)
  357. updown_k, _ = module_k.calc_updown(kw)
  358. updown_v, _ = module_v.calc_updown(vw)
  359. del qw, kw, vw
  360. updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
  361. updown_out, ex_bias = module_out.calc_updown(self.out_proj.weight)
  362. self.in_proj_weight += updown_qkv
  363. self.out_proj.weight += updown_out
  364. if ex_bias is not None:
  365. if self.out_proj.bias is None:
  366. self.out_proj.bias = torch.nn.Parameter(ex_bias)
  367. else:
  368. self.out_proj.bias += ex_bias
  369. except RuntimeError as e:
  370. logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
  371. extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
  372. continue
  373. if module is None:
  374. continue
  375. logging.debug(f"Network {net.name} layer {network_layer_name}: couldn't find supported operation")
  376. extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
  377. self.network_current_names = wanted_names
  378. def network_forward(org_module, input, original_forward):
  379. """
  380. Old way of applying Lora by executing operations during layer's forward.
  381. Stacking many loras this way results in big performance degradation.
  382. """
  383. if len(loaded_networks) == 0:
  384. return original_forward(org_module, input)
  385. input = devices.cond_cast_unet(input)
  386. network_restore_weights_from_backup(org_module)
  387. network_reset_cached_weight(org_module)
  388. y = original_forward(org_module, input)
  389. network_layer_name = getattr(org_module, 'network_layer_name', None)
  390. for lora in loaded_networks:
  391. module = lora.modules.get(network_layer_name, None)
  392. if module is None:
  393. continue
  394. y = module.forward(input, y)
  395. return y
  396. def network_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
  397. self.network_current_names = ()
  398. self.network_weights_backup = None
  399. self.network_bias_backup = None
  400. def network_Linear_forward(self, input):
  401. if shared.opts.lora_functional:
  402. return network_forward(self, input, originals.Linear_forward)
  403. network_apply_weights(self)
  404. return originals.Linear_forward(self, input)
  405. def network_Linear_load_state_dict(self, *args, **kwargs):
  406. network_reset_cached_weight(self)
  407. return originals.Linear_load_state_dict(self, *args, **kwargs)
  408. def network_Conv2d_forward(self, input):
  409. if shared.opts.lora_functional:
  410. return network_forward(self, input, originals.Conv2d_forward)
  411. network_apply_weights(self)
  412. return originals.Conv2d_forward(self, input)
  413. def network_Conv2d_load_state_dict(self, *args, **kwargs):
  414. network_reset_cached_weight(self)
  415. return originals.Conv2d_load_state_dict(self, *args, **kwargs)
  416. def network_GroupNorm_forward(self, input):
  417. if shared.opts.lora_functional:
  418. return network_forward(self, input, originals.GroupNorm_forward)
  419. network_apply_weights(self)
  420. return originals.GroupNorm_forward(self, input)
  421. def network_GroupNorm_load_state_dict(self, *args, **kwargs):
  422. network_reset_cached_weight(self)
  423. return originals.GroupNorm_load_state_dict(self, *args, **kwargs)
  424. def network_LayerNorm_forward(self, input):
  425. if shared.opts.lora_functional:
  426. return network_forward(self, input, originals.LayerNorm_forward)
  427. network_apply_weights(self)
  428. return originals.LayerNorm_forward(self, input)
  429. def network_LayerNorm_load_state_dict(self, *args, **kwargs):
  430. network_reset_cached_weight(self)
  431. return originals.LayerNorm_load_state_dict(self, *args, **kwargs)
  432. def network_MultiheadAttention_forward(self, *args, **kwargs):
  433. network_apply_weights(self)
  434. return originals.MultiheadAttention_forward(self, *args, **kwargs)
  435. def network_MultiheadAttention_load_state_dict(self, *args, **kwargs):
  436. network_reset_cached_weight(self)
  437. return originals.MultiheadAttention_load_state_dict(self, *args, **kwargs)
  438. def process_network_files(names: list[str] | None = None):
  439. candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
  440. candidates += list(shared.walk_files(shared.cmd_opts.lyco_dir_backcompat, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
  441. for filename in candidates:
  442. if os.path.isdir(filename):
  443. continue
  444. name = os.path.splitext(os.path.basename(filename))[0]
  445. # if names is provided, only load networks with names in the list
  446. if names and name not in names:
  447. continue
  448. try:
  449. entry = network.NetworkOnDisk(name, filename)
  450. except OSError: # should catch FileNotFoundError and PermissionError etc.
  451. errors.report(f"Failed to load network {name} from {filename}", exc_info=True)
  452. continue
  453. available_networks[name] = entry
  454. if entry.alias in available_network_aliases:
  455. forbidden_network_aliases[entry.alias.lower()] = 1
  456. available_network_aliases[name] = entry
  457. available_network_aliases[entry.alias] = entry
  458. def update_available_networks_by_names(names: list[str]):
  459. process_network_files(names)
  460. def list_available_networks():
  461. available_networks.clear()
  462. available_network_aliases.clear()
  463. forbidden_network_aliases.clear()
  464. available_network_hash_lookup.clear()
  465. forbidden_network_aliases.update({"none": 1, "Addams": 1})
  466. os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
  467. process_network_files()
  468. re_network_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)")
  469. def infotext_pasted(infotext, params):
  470. if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]:
  471. return # if the other extension is active, it will handle those fields, no need to do anything
  472. added = []
  473. for k in params:
  474. if not k.startswith("AddNet Model "):
  475. continue
  476. num = k[13:]
  477. if params.get("AddNet Module " + num) != "LoRA":
  478. continue
  479. name = params.get("AddNet Model " + num)
  480. if name is None:
  481. continue
  482. m = re_network_name.match(name)
  483. if m:
  484. name = m.group(1)
  485. multiplier = params.get("AddNet Weight A " + num, "1.0")
  486. added.append(f"<lora:{name}:{multiplier}>")
  487. if added:
  488. params["Prompt"] += "\n" + "".join(added)
  489. originals: lora_patches.LoraPatches = None
  490. extra_network_lora = None
  491. available_networks = {}
  492. available_network_aliases = {}
  493. loaded_networks = []
  494. loaded_bundle_embeddings = {}
  495. networks_in_memory = {}
  496. available_network_hash_lookup = {}
  497. forbidden_network_aliases = {}
  498. list_available_networks()