processing.py 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337
  1. import json
  2. import logging
  3. import math
  4. import os
  5. import sys
  6. import hashlib
  7. import torch
  8. import numpy as np
  9. from PIL import Image, ImageOps
  10. import random
  11. import cv2
  12. from skimage import exposure
  13. from typing import Any, Dict, List
  14. import modules.sd_hijack
  15. from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet
  16. from modules.sd_hijack import model_hijack
  17. from modules.shared import opts, cmd_opts, state
  18. import modules.shared as shared
  19. import modules.paths as paths
  20. import modules.face_restoration
  21. import modules.images as images
  22. import modules.styles
  23. import modules.sd_models as sd_models
  24. import modules.sd_vae as sd_vae
  25. from ldm.data.util import AddMiDaS
  26. from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
  27. from einops import repeat, rearrange
  28. from blendmodes.blend import blendLayers, BlendType
  29. # some of those options should not be changed at all because they would break the model, so I removed them from options.
  30. opt_C = 4
  31. opt_f = 8
  32. def setup_color_correction(image):
  33. logging.info("Calibrating color correction.")
  34. correction_target = cv2.cvtColor(np.asarray(image.copy()), cv2.COLOR_RGB2LAB)
  35. return correction_target
  36. def apply_color_correction(correction, original_image):
  37. logging.info("Applying color correction.")
  38. image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
  39. cv2.cvtColor(
  40. np.asarray(original_image),
  41. cv2.COLOR_RGB2LAB
  42. ),
  43. correction,
  44. channel_axis=2
  45. ), cv2.COLOR_LAB2RGB).astype("uint8"))
  46. image = blendLayers(image, original_image, BlendType.LUMINOSITY)
  47. return image
  48. def apply_overlay(image, paste_loc, index, overlays):
  49. if overlays is None or index >= len(overlays):
  50. return image
  51. overlay = overlays[index]
  52. if paste_loc is not None:
  53. x, y, w, h = paste_loc
  54. base_image = Image.new('RGBA', (overlay.width, overlay.height))
  55. image = images.resize_image(1, image, w, h)
  56. base_image.paste(image, (x, y))
  57. image = base_image
  58. image = image.convert('RGBA')
  59. image.alpha_composite(overlay)
  60. image = image.convert('RGB')
  61. return image
  62. def txt2img_image_conditioning(sd_model, x, width, height):
  63. if sd_model.model.conditioning_key in {'hybrid', 'concat'}: # Inpainting models
  64. # The "masked-image" in this case will just be all zeros since the entire image is masked.
  65. image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
  66. image_conditioning = sd_model.get_first_stage_encoding(sd_model.encode_first_stage(image_conditioning))
  67. # Add the fake full 1s mask to the first dimension.
  68. image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
  69. image_conditioning = image_conditioning.to(x.dtype)
  70. return image_conditioning
  71. elif sd_model.model.conditioning_key == "crossattn-adm": # UnCLIP models
  72. return x.new_zeros(x.shape[0], 2*sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device)
  73. else:
  74. # Dummy zero conditioning if we're not using inpainting or unclip models.
  75. # Still takes up a bit of memory, but no encoder call.
  76. # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
  77. return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
  78. class StableDiffusionProcessing:
  79. """
  80. The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
  81. """
  82. cached_uc = [None, None]
  83. cached_c = [None, None]
  84. def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
  85. if sampler_index is not None:
  86. print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
  87. self.outpath_samples: str = outpath_samples
  88. self.outpath_grids: str = outpath_grids
  89. self.prompt: str = prompt
  90. self.prompt_for_display: str = None
  91. self.negative_prompt: str = (negative_prompt or "")
  92. self.styles: list = styles or []
  93. self.seed: int = seed
  94. self.subseed: int = subseed
  95. self.subseed_strength: float = subseed_strength
  96. self.seed_resize_from_h: int = seed_resize_from_h
  97. self.seed_resize_from_w: int = seed_resize_from_w
  98. self.sampler_name: str = sampler_name
  99. self.batch_size: int = batch_size
  100. self.n_iter: int = n_iter
  101. self.steps: int = steps
  102. self.cfg_scale: float = cfg_scale
  103. self.width: int = width
  104. self.height: int = height
  105. self.restore_faces: bool = restore_faces
  106. self.tiling: bool = tiling
  107. self.do_not_save_samples: bool = do_not_save_samples
  108. self.do_not_save_grid: bool = do_not_save_grid
  109. self.extra_generation_params: dict = extra_generation_params or {}
  110. self.overlay_images = overlay_images
  111. self.eta = eta
  112. self.do_not_reload_embeddings = do_not_reload_embeddings
  113. self.paste_to = None
  114. self.color_corrections = None
  115. self.denoising_strength: float = denoising_strength
  116. self.sampler_noise_scheduler_override = None
  117. self.ddim_discretize = ddim_discretize or opts.ddim_discretize
  118. self.s_min_uncond = s_min_uncond or opts.s_min_uncond
  119. self.s_churn = s_churn or opts.s_churn
  120. self.s_tmin = s_tmin or opts.s_tmin
  121. self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
  122. self.s_noise = s_noise or opts.s_noise
  123. self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
  124. self.override_settings_restore_afterwards = override_settings_restore_afterwards
  125. self.is_using_inpainting_conditioning = False
  126. self.disable_extra_networks = False
  127. self.token_merging_ratio = 0
  128. self.token_merging_ratio_hr = 0
  129. if not seed_enable_extras:
  130. self.subseed = -1
  131. self.subseed_strength = 0
  132. self.seed_resize_from_h = 0
  133. self.seed_resize_from_w = 0
  134. self.scripts = None
  135. self.script_args = script_args
  136. self.all_prompts = None
  137. self.all_negative_prompts = None
  138. self.all_seeds = None
  139. self.all_subseeds = None
  140. self.iteration = 0
  141. self.is_hr_pass = False
  142. self.sampler = None
  143. self.prompts = None
  144. self.negative_prompts = None
  145. self.extra_network_data = None
  146. self.seeds = None
  147. self.subseeds = None
  148. self.step_multiplier = 1
  149. self.cached_uc = StableDiffusionProcessing.cached_uc
  150. self.cached_c = StableDiffusionProcessing.cached_c
  151. self.uc = None
  152. self.c = None
  153. self.user = None
  154. @property
  155. def sd_model(self):
  156. return shared.sd_model
  157. def txt2img_image_conditioning(self, x, width=None, height=None):
  158. self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'}
  159. return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height)
  160. def depth2img_image_conditioning(self, source_image):
  161. # Use the AddMiDaS helper to Format our source image to suit the MiDaS model
  162. transformer = AddMiDaS(model_type="dpt_hybrid")
  163. transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")})
  164. midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device)
  165. midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size)
  166. conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image))
  167. conditioning = torch.nn.functional.interpolate(
  168. self.sd_model.depth_model(midas_in),
  169. size=conditioning_image.shape[2:],
  170. mode="bicubic",
  171. align_corners=False,
  172. )
  173. (depth_min, depth_max) = torch.aminmax(conditioning)
  174. conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1.
  175. return conditioning
  176. def edit_image_conditioning(self, source_image):
  177. conditioning_image = self.sd_model.encode_first_stage(source_image).mode()
  178. return conditioning_image
  179. def unclip_image_conditioning(self, source_image):
  180. c_adm = self.sd_model.embedder(source_image)
  181. if self.sd_model.noise_augmentor is not None:
  182. noise_level = 0 # TODO: Allow other noise levels?
  183. c_adm, noise_level_emb = self.sd_model.noise_augmentor(c_adm, noise_level=repeat(torch.tensor([noise_level]).to(c_adm.device), '1 -> b', b=c_adm.shape[0]))
  184. c_adm = torch.cat((c_adm, noise_level_emb), 1)
  185. return c_adm
  186. def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None):
  187. self.is_using_inpainting_conditioning = True
  188. # Handle the different mask inputs
  189. if image_mask is not None:
  190. if torch.is_tensor(image_mask):
  191. conditioning_mask = image_mask
  192. else:
  193. conditioning_mask = np.array(image_mask.convert("L"))
  194. conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
  195. conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
  196. # Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
  197. conditioning_mask = torch.round(conditioning_mask)
  198. else:
  199. conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:])
  200. # Create another latent image, this time with a masked version of the original input.
  201. # Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
  202. conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype)
  203. conditioning_image = torch.lerp(
  204. source_image,
  205. source_image * (1.0 - conditioning_mask),
  206. getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
  207. )
  208. # Encode the new masked image using first stage of network.
  209. conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
  210. # Create the concatenated conditioning tensor to be fed to `c_concat`
  211. conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
  212. conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
  213. image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
  214. image_conditioning = image_conditioning.to(shared.device).type(self.sd_model.dtype)
  215. return image_conditioning
  216. def img2img_image_conditioning(self, source_image, latent_image, image_mask=None):
  217. source_image = devices.cond_cast_float(source_image)
  218. # HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
  219. # identify itself with a field common to all models. The conditioning_key is also hybrid.
  220. if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
  221. return self.depth2img_image_conditioning(source_image)
  222. if self.sd_model.cond_stage_key == "edit":
  223. return self.edit_image_conditioning(source_image)
  224. if self.sampler.conditioning_key in {'hybrid', 'concat'}:
  225. return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
  226. if self.sampler.conditioning_key == "crossattn-adm":
  227. return self.unclip_image_conditioning(source_image)
  228. # Dummy zero conditioning if we're not using inpainting or depth model.
  229. return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
  230. def init(self, all_prompts, all_seeds, all_subseeds):
  231. pass
  232. def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
  233. raise NotImplementedError()
  234. def close(self):
  235. self.sampler = None
  236. self.c = None
  237. self.uc = None
  238. if not opts.experimental_persistent_cond_cache:
  239. StableDiffusionProcessing.cached_c = [None, None]
  240. StableDiffusionProcessing.cached_uc = [None, None]
  241. def get_token_merging_ratio(self, for_hr=False):
  242. if for_hr:
  243. return self.token_merging_ratio_hr or opts.token_merging_ratio_hr or self.token_merging_ratio or opts.token_merging_ratio
  244. return self.token_merging_ratio or opts.token_merging_ratio
  245. def setup_prompts(self):
  246. if type(self.prompt) == list:
  247. self.all_prompts = self.prompt
  248. else:
  249. self.all_prompts = self.batch_size * self.n_iter * [self.prompt]
  250. if type(self.negative_prompt) == list:
  251. self.all_negative_prompts = self.negative_prompt
  252. else:
  253. self.all_negative_prompts = self.batch_size * self.n_iter * [self.negative_prompt]
  254. self.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_prompts]
  255. self.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_negative_prompts]
  256. def get_conds_with_caching(self, function, required_prompts, steps, caches, extra_network_data):
  257. """
  258. Returns the result of calling function(shared.sd_model, required_prompts, steps)
  259. using a cache to store the result if the same arguments have been used before.
  260. cache is an array containing two elements. The first element is a tuple
  261. representing the previously used arguments, or None if no arguments
  262. have been used before. The second element is where the previously
  263. computed result is stored.
  264. caches is a list with items described above.
  265. """
  266. for cache in caches:
  267. if cache[0] is not None and (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info, extra_network_data) == cache[0]:
  268. return cache[1]
  269. cache = caches[0]
  270. with devices.autocast():
  271. cache[1] = function(shared.sd_model, required_prompts, steps)
  272. cache[0] = (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info, extra_network_data)
  273. return cache[1]
  274. def setup_conds(self):
  275. prompts = prompt_parser.SdConditioning(self.prompts, width=self.width, height=self.height)
  276. negative_prompts = prompt_parser.SdConditioning(self.negative_prompts, width=self.width, height=self.height, is_negative_prompt=True)
  277. sampler_config = sd_samplers.find_sampler_config(self.sampler_name)
  278. self.step_multiplier = 2 if sampler_config and sampler_config.options.get("second_order", False) else 1
  279. self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, self.steps * self.step_multiplier, [self.cached_uc], self.extra_network_data)
  280. self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, self.steps * self.step_multiplier, [self.cached_c], self.extra_network_data)
  281. def parse_extra_network_prompts(self):
  282. self.prompts, self.extra_network_data = extra_networks.parse_prompts(self.prompts)
  283. class Processed:
  284. def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
  285. self.images = images_list
  286. self.prompt = p.prompt
  287. self.negative_prompt = p.negative_prompt
  288. self.seed = seed
  289. self.subseed = subseed
  290. self.subseed_strength = p.subseed_strength
  291. self.info = info
  292. self.comments = comments
  293. self.width = p.width
  294. self.height = p.height
  295. self.sampler_name = p.sampler_name
  296. self.cfg_scale = p.cfg_scale
  297. self.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
  298. self.steps = p.steps
  299. self.batch_size = p.batch_size
  300. self.restore_faces = p.restore_faces
  301. self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None
  302. self.sd_model_hash = shared.sd_model.sd_model_hash
  303. self.seed_resize_from_w = p.seed_resize_from_w
  304. self.seed_resize_from_h = p.seed_resize_from_h
  305. self.denoising_strength = getattr(p, 'denoising_strength', None)
  306. self.extra_generation_params = p.extra_generation_params
  307. self.index_of_first_image = index_of_first_image
  308. self.styles = p.styles
  309. self.job_timestamp = state.job_timestamp
  310. self.clip_skip = opts.CLIP_stop_at_last_layers
  311. self.token_merging_ratio = p.token_merging_ratio
  312. self.token_merging_ratio_hr = p.token_merging_ratio_hr
  313. self.eta = p.eta
  314. self.ddim_discretize = p.ddim_discretize
  315. self.s_churn = p.s_churn
  316. self.s_tmin = p.s_tmin
  317. self.s_tmax = p.s_tmax
  318. self.s_noise = p.s_noise
  319. self.s_min_uncond = p.s_min_uncond
  320. self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
  321. self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0]
  322. self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
  323. self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
  324. self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
  325. self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning
  326. self.all_prompts = all_prompts or p.all_prompts or [self.prompt]
  327. self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
  328. self.all_seeds = all_seeds or p.all_seeds or [self.seed]
  329. self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
  330. self.infotexts = infotexts or [info]
  331. def js(self):
  332. obj = {
  333. "prompt": self.all_prompts[0],
  334. "all_prompts": self.all_prompts,
  335. "negative_prompt": self.all_negative_prompts[0],
  336. "all_negative_prompts": self.all_negative_prompts,
  337. "seed": self.seed,
  338. "all_seeds": self.all_seeds,
  339. "subseed": self.subseed,
  340. "all_subseeds": self.all_subseeds,
  341. "subseed_strength": self.subseed_strength,
  342. "width": self.width,
  343. "height": self.height,
  344. "sampler_name": self.sampler_name,
  345. "cfg_scale": self.cfg_scale,
  346. "steps": self.steps,
  347. "batch_size": self.batch_size,
  348. "restore_faces": self.restore_faces,
  349. "face_restoration_model": self.face_restoration_model,
  350. "sd_model_hash": self.sd_model_hash,
  351. "seed_resize_from_w": self.seed_resize_from_w,
  352. "seed_resize_from_h": self.seed_resize_from_h,
  353. "denoising_strength": self.denoising_strength,
  354. "extra_generation_params": self.extra_generation_params,
  355. "index_of_first_image": self.index_of_first_image,
  356. "infotexts": self.infotexts,
  357. "styles": self.styles,
  358. "job_timestamp": self.job_timestamp,
  359. "clip_skip": self.clip_skip,
  360. "is_using_inpainting_conditioning": self.is_using_inpainting_conditioning,
  361. }
  362. return json.dumps(obj)
  363. def infotext(self, p: StableDiffusionProcessing, index):
  364. return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
  365. def get_token_merging_ratio(self, for_hr=False):
  366. return self.token_merging_ratio_hr if for_hr else self.token_merging_ratio
  367. # from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
  368. def slerp(val, low, high):
  369. low_norm = low/torch.norm(low, dim=1, keepdim=True)
  370. high_norm = high/torch.norm(high, dim=1, keepdim=True)
  371. dot = (low_norm*high_norm).sum(1)
  372. if dot.mean() > 0.9995:
  373. return low * val + high * (1 - val)
  374. omega = torch.acos(dot)
  375. so = torch.sin(omega)
  376. res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
  377. return res
  378. def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
  379. eta_noise_seed_delta = opts.eta_noise_seed_delta or 0
  380. xs = []
  381. # if we have multiple seeds, this means we are working with batch size>1; this then
  382. # enables the generation of additional tensors with noise that the sampler will use during its processing.
  383. # Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
  384. # produce the same images as with two batches [100], [101].
  385. if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or eta_noise_seed_delta > 0):
  386. sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
  387. else:
  388. sampler_noises = None
  389. for i, seed in enumerate(seeds):
  390. noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)
  391. subnoise = None
  392. if subseeds is not None:
  393. subseed = 0 if i >= len(subseeds) else subseeds[i]
  394. subnoise = devices.randn(subseed, noise_shape)
  395. # randn results depend on device; gpu and cpu get different results for same seed;
  396. # the way I see it, it's better to do this on CPU, so that everyone gets same result;
  397. # but the original script had it like this, so I do not dare change it for now because
  398. # it will break everyone's seeds.
  399. noise = devices.randn(seed, noise_shape)
  400. if subnoise is not None:
  401. noise = slerp(subseed_strength, noise, subnoise)
  402. if noise_shape != shape:
  403. x = devices.randn(seed, shape)
  404. dx = (shape[2] - noise_shape[2]) // 2
  405. dy = (shape[1] - noise_shape[1]) // 2
  406. w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx
  407. h = noise_shape[1] if dy >= 0 else noise_shape[1] + 2 * dy
  408. tx = 0 if dx < 0 else dx
  409. ty = 0 if dy < 0 else dy
  410. dx = max(-dx, 0)
  411. dy = max(-dy, 0)
  412. x[:, ty:ty+h, tx:tx+w] = noise[:, dy:dy+h, dx:dx+w]
  413. noise = x
  414. if sampler_noises is not None:
  415. cnt = p.sampler.number_of_needed_noises(p)
  416. if eta_noise_seed_delta > 0:
  417. torch.manual_seed(seed + eta_noise_seed_delta)
  418. for j in range(cnt):
  419. sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
  420. xs.append(noise)
  421. if sampler_noises is not None:
  422. p.sampler.sampler_noises = [torch.stack(n).to(shared.device) for n in sampler_noises]
  423. x = torch.stack(xs).to(shared.device)
  424. return x
  425. def decode_first_stage(model, x):
  426. with devices.autocast(disable=x.dtype == devices.dtype_vae):
  427. x = model.decode_first_stage(x)
  428. return x
  429. def get_fixed_seed(seed):
  430. if seed is None or seed == '' or seed == -1:
  431. return int(random.randrange(4294967294))
  432. return seed
  433. def fix_seed(p):
  434. p.seed = get_fixed_seed(p.seed)
  435. p.subseed = get_fixed_seed(p.subseed)
  436. def program_version():
  437. import launch
  438. res = launch.git_tag()
  439. if res == "<none>":
  440. res = None
  441. return res
  442. def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False):
  443. index = position_in_batch + iteration * p.batch_size
  444. clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
  445. enable_hr = getattr(p, 'enable_hr', False)
  446. token_merging_ratio = p.get_token_merging_ratio()
  447. token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True)
  448. uses_ensd = opts.eta_noise_seed_delta != 0
  449. if uses_ensd:
  450. uses_ensd = sd_samplers_common.is_sampler_using_eta_noise_seed_delta(p)
  451. generation_params = {
  452. "Steps": p.steps,
  453. "Sampler": p.sampler_name,
  454. "CFG scale": p.cfg_scale,
  455. "Image CFG scale": getattr(p, 'image_cfg_scale', None),
  456. "Seed": all_seeds[index],
  457. "Face restoration": (opts.face_restoration_model if p.restore_faces else None),
  458. "Size": f"{p.width}x{p.height}",
  459. "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
  460. "Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
  461. "Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
  462. "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
  463. "Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
  464. "Denoising strength": getattr(p, 'denoising_strength', None),
  465. "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
  466. "Clip skip": None if clip_skip <= 1 else clip_skip,
  467. "ENSD": opts.eta_noise_seed_delta if uses_ensd else None,
  468. "Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio,
  469. "Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
  470. "Init image hash": getattr(p, 'init_img_hash', None),
  471. "RNG": opts.randn_source if opts.randn_source != "GPU" else None,
  472. "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
  473. **p.extra_generation_params,
  474. "Version": program_version() if opts.add_version_to_infotext else None,
  475. "User": p.user if opts.add_user_name_to_info else None,
  476. }
  477. generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
  478. prompt_text = p.prompt if use_main_prompt else all_prompts[index]
  479. negative_prompt_text = f"\nNegative prompt: {p.all_negative_prompts[index]}" if p.all_negative_prompts[index] else ""
  480. return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip()
  481. def process_images(p: StableDiffusionProcessing) -> Processed:
  482. if p.scripts is not None:
  483. p.scripts.before_process(p)
  484. stored_opts = {k: opts.data[k] for k in p.override_settings.keys()}
  485. try:
  486. # if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint
  487. if sd_models.checkpoint_aliases.get(p.override_settings.get('sd_model_checkpoint')) is None:
  488. p.override_settings.pop('sd_model_checkpoint', None)
  489. sd_models.reload_model_weights()
  490. for k, v in p.override_settings.items():
  491. setattr(opts, k, v)
  492. if k == 'sd_model_checkpoint':
  493. sd_models.reload_model_weights()
  494. if k == 'sd_vae':
  495. sd_vae.reload_vae_weights()
  496. sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio())
  497. res = process_images_inner(p)
  498. finally:
  499. sd_models.apply_token_merging(p.sd_model, 0)
  500. # restore opts to original state
  501. if p.override_settings_restore_afterwards:
  502. for k, v in stored_opts.items():
  503. setattr(opts, k, v)
  504. if k == 'sd_vae':
  505. sd_vae.reload_vae_weights()
  506. return res
  507. def process_images_inner(p: StableDiffusionProcessing) -> Processed:
  508. """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
  509. if type(p.prompt) == list:
  510. assert(len(p.prompt) > 0)
  511. else:
  512. assert p.prompt is not None
  513. devices.torch_gc()
  514. seed = get_fixed_seed(p.seed)
  515. subseed = get_fixed_seed(p.subseed)
  516. modules.sd_hijack.model_hijack.apply_circular(p.tiling)
  517. modules.sd_hijack.model_hijack.clear_comments()
  518. comments = {}
  519. p.setup_prompts()
  520. if type(seed) == list:
  521. p.all_seeds = seed
  522. else:
  523. p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
  524. if type(subseed) == list:
  525. p.all_subseeds = subseed
  526. else:
  527. p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
  528. def infotext(iteration=0, position_in_batch=0, use_main_prompt=False):
  529. return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch, use_main_prompt)
  530. if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
  531. model_hijack.embedding_db.load_textual_inversion_embeddings()
  532. if p.scripts is not None:
  533. p.scripts.process(p)
  534. infotexts = []
  535. output_images = []
  536. with torch.no_grad(), p.sd_model.ema_scope():
  537. with devices.autocast():
  538. p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
  539. # for OSX, loading the model during sampling changes the generated picture, so it is loaded here
  540. if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN":
  541. sd_vae_approx.model()
  542. sd_unet.apply_unet()
  543. if state.job_count == -1:
  544. state.job_count = p.n_iter
  545. for n in range(p.n_iter):
  546. p.iteration = n
  547. if state.skipped:
  548. state.skipped = False
  549. if state.interrupted:
  550. break
  551. p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
  552. p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
  553. p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
  554. p.subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
  555. if p.scripts is not None:
  556. p.scripts.before_process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
  557. if len(p.prompts) == 0:
  558. break
  559. p.parse_extra_network_prompts()
  560. if not p.disable_extra_networks:
  561. with devices.autocast():
  562. extra_networks.activate(p, p.extra_network_data)
  563. if p.scripts is not None:
  564. p.scripts.process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
  565. # params.txt should be saved after scripts.process_batch, since the
  566. # infotext could be modified by that callback
  567. # Example: a wildcard processed by process_batch sets an extra model
  568. # strength, which is saved as "Model Strength: 1.0" in the infotext
  569. if n == 0:
  570. with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
  571. processed = Processed(p, [], p.seed, "")
  572. file.write(processed.infotext(p, 0))
  573. p.setup_conds()
  574. if len(model_hijack.comments) > 0:
  575. for comment in model_hijack.comments:
  576. comments[comment] = 1
  577. if p.n_iter > 1:
  578. shared.state.job = f"Batch {n+1} out of {p.n_iter}"
  579. with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
  580. samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
  581. x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))]
  582. for x in x_samples_ddim:
  583. devices.test_for_nans(x, "vae")
  584. x_samples_ddim = torch.stack(x_samples_ddim).float()
  585. x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
  586. del samples_ddim
  587. if lowvram.is_enabled(shared.sd_model):
  588. lowvram.send_everything_to_cpu()
  589. devices.torch_gc()
  590. if p.scripts is not None:
  591. p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
  592. for i, x_sample in enumerate(x_samples_ddim):
  593. p.batch_index = i
  594. x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
  595. x_sample = x_sample.astype(np.uint8)
  596. if p.restore_faces:
  597. if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
  598. images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-face-restoration")
  599. devices.torch_gc()
  600. x_sample = modules.face_restoration.restore_faces(x_sample)
  601. devices.torch_gc()
  602. image = Image.fromarray(x_sample)
  603. if p.scripts is not None:
  604. pp = scripts.PostprocessImageArgs(image)
  605. p.scripts.postprocess_image(p, pp)
  606. image = pp.image
  607. if p.color_corrections is not None and i < len(p.color_corrections):
  608. if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
  609. image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
  610. images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
  611. image = apply_color_correction(p.color_corrections[i], image)
  612. image = apply_overlay(image, p.paste_to, i, p.overlay_images)
  613. if opts.samples_save and not p.do_not_save_samples:
  614. images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p)
  615. text = infotext(n, i)
  616. infotexts.append(text)
  617. if opts.enable_pnginfo:
  618. image.info["parameters"] = text
  619. output_images.append(image)
  620. if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay and any([opts.save_mask, opts.save_mask_composite, opts.return_mask, opts.return_mask_composite]):
  621. image_mask = p.mask_for_overlay.convert('RGB')
  622. image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
  623. if opts.save_mask:
  624. images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask")
  625. if opts.save_mask_composite:
  626. images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask-composite")
  627. if opts.return_mask:
  628. output_images.append(image_mask)
  629. if opts.return_mask_composite:
  630. output_images.append(image_mask_composite)
  631. del x_samples_ddim
  632. devices.torch_gc()
  633. state.nextjob()
  634. p.color_corrections = None
  635. index_of_first_image = 0
  636. unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple
  637. if (opts.return_grid or opts.grid_save) and not p.do_not_save_grid and not unwanted_grid_because_of_img_count:
  638. grid = images.image_grid(output_images, p.batch_size)
  639. if opts.return_grid:
  640. text = infotext(use_main_prompt=True)
  641. infotexts.insert(0, text)
  642. if opts.enable_pnginfo:
  643. grid.info["parameters"] = text
  644. output_images.insert(0, grid)
  645. index_of_first_image = 1
  646. if opts.grid_save:
  647. images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(use_main_prompt=True), short_filename=not opts.grid_extended_filename, p=p, grid=True)
  648. if not p.disable_extra_networks and p.extra_network_data:
  649. extra_networks.deactivate(p, p.extra_network_data)
  650. devices.torch_gc()
  651. res = Processed(
  652. p,
  653. images_list=output_images,
  654. seed=p.all_seeds[0],
  655. info=infotext(),
  656. comments="".join(f"{comment}\n" for comment in comments),
  657. subseed=p.all_subseeds[0],
  658. index_of_first_image=index_of_first_image,
  659. infotexts=infotexts,
  660. )
  661. if p.scripts is not None:
  662. p.scripts.postprocess(p, res)
  663. return res
  664. def old_hires_fix_first_pass_dimensions(width, height):
  665. """old algorithm for auto-calculating first pass size"""
  666. desired_pixel_count = 512 * 512
  667. actual_pixel_count = width * height
  668. scale = math.sqrt(desired_pixel_count / actual_pixel_count)
  669. width = math.ceil(scale * width / 64) * 64
  670. height = math.ceil(scale * height / 64) * 64
  671. return width, height
  672. class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
  673. sampler = None
  674. cached_hr_uc = [None, None]
  675. cached_hr_c = [None, None]
  676. def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, hr_second_pass_steps: int = 0, hr_resize_x: int = 0, hr_resize_y: int = 0, hr_sampler_name: str = None, hr_prompt: str = '', hr_negative_prompt: str = '', **kwargs):
  677. super().__init__(**kwargs)
  678. self.enable_hr = enable_hr
  679. self.denoising_strength = denoising_strength
  680. self.hr_scale = hr_scale
  681. self.hr_upscaler = hr_upscaler
  682. self.hr_second_pass_steps = hr_second_pass_steps
  683. self.hr_resize_x = hr_resize_x
  684. self.hr_resize_y = hr_resize_y
  685. self.hr_upscale_to_x = hr_resize_x
  686. self.hr_upscale_to_y = hr_resize_y
  687. self.hr_sampler_name = hr_sampler_name
  688. self.hr_prompt = hr_prompt
  689. self.hr_negative_prompt = hr_negative_prompt
  690. self.all_hr_prompts = None
  691. self.all_hr_negative_prompts = None
  692. if firstphase_width != 0 or firstphase_height != 0:
  693. self.hr_upscale_to_x = self.width
  694. self.hr_upscale_to_y = self.height
  695. self.width = firstphase_width
  696. self.height = firstphase_height
  697. self.truncate_x = 0
  698. self.truncate_y = 0
  699. self.applied_old_hires_behavior_to = None
  700. self.hr_prompts = None
  701. self.hr_negative_prompts = None
  702. self.hr_extra_network_data = None
  703. self.cached_hr_uc = StableDiffusionProcessingTxt2Img.cached_hr_uc
  704. self.cached_hr_c = StableDiffusionProcessingTxt2Img.cached_hr_c
  705. self.hr_c = None
  706. self.hr_uc = None
  707. def init(self, all_prompts, all_seeds, all_subseeds):
  708. if self.enable_hr:
  709. if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
  710. self.extra_generation_params["Hires sampler"] = self.hr_sampler_name
  711. if tuple(self.hr_prompt) != tuple(self.prompt):
  712. self.extra_generation_params["Hires prompt"] = self.hr_prompt
  713. if tuple(self.hr_negative_prompt) != tuple(self.negative_prompt):
  714. self.extra_generation_params["Hires negative prompt"] = self.hr_negative_prompt
  715. if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height):
  716. self.hr_resize_x = self.width
  717. self.hr_resize_y = self.height
  718. self.hr_upscale_to_x = self.width
  719. self.hr_upscale_to_y = self.height
  720. self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height)
  721. self.applied_old_hires_behavior_to = (self.width, self.height)
  722. if self.hr_resize_x == 0 and self.hr_resize_y == 0:
  723. self.extra_generation_params["Hires upscale"] = self.hr_scale
  724. self.hr_upscale_to_x = int(self.width * self.hr_scale)
  725. self.hr_upscale_to_y = int(self.height * self.hr_scale)
  726. else:
  727. self.extra_generation_params["Hires resize"] = f"{self.hr_resize_x}x{self.hr_resize_y}"
  728. if self.hr_resize_y == 0:
  729. self.hr_upscale_to_x = self.hr_resize_x
  730. self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
  731. elif self.hr_resize_x == 0:
  732. self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
  733. self.hr_upscale_to_y = self.hr_resize_y
  734. else:
  735. target_w = self.hr_resize_x
  736. target_h = self.hr_resize_y
  737. src_ratio = self.width / self.height
  738. dst_ratio = self.hr_resize_x / self.hr_resize_y
  739. if src_ratio < dst_ratio:
  740. self.hr_upscale_to_x = self.hr_resize_x
  741. self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
  742. else:
  743. self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
  744. self.hr_upscale_to_y = self.hr_resize_y
  745. self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f
  746. self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f
  747. # special case: the user has chosen to do nothing
  748. if self.hr_upscale_to_x == self.width and self.hr_upscale_to_y == self.height:
  749. self.enable_hr = False
  750. self.denoising_strength = None
  751. self.extra_generation_params.pop("Hires upscale", None)
  752. self.extra_generation_params.pop("Hires resize", None)
  753. return
  754. if not state.processing_has_refined_job_count:
  755. if state.job_count == -1:
  756. state.job_count = self.n_iter
  757. shared.total_tqdm.updateTotal((self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count)
  758. state.job_count = state.job_count * 2
  759. state.processing_has_refined_job_count = True
  760. if self.hr_second_pass_steps:
  761. self.extra_generation_params["Hires steps"] = self.hr_second_pass_steps
  762. if self.hr_upscaler is not None:
  763. self.extra_generation_params["Hires upscaler"] = self.hr_upscaler
  764. def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
  765. self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
  766. latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
  767. if self.enable_hr and latent_scale_mode is None:
  768. if not any(x.name == self.hr_upscaler for x in shared.sd_upscalers):
  769. raise Exception(f"could not find upscaler named {self.hr_upscaler}")
  770. x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
  771. samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
  772. if not self.enable_hr:
  773. return samples
  774. self.is_hr_pass = True
  775. target_width = self.hr_upscale_to_x
  776. target_height = self.hr_upscale_to_y
  777. def save_intermediate(image, index):
  778. """saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images"""
  779. if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix:
  780. return
  781. if not isinstance(image, Image.Image):
  782. image = sd_samplers.sample_to_image(image, index, approximation=0)
  783. info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index)
  784. images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, suffix="-before-highres-fix")
  785. if latent_scale_mode is not None:
  786. for i in range(samples.shape[0]):
  787. save_intermediate(samples, i)
  788. samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=latent_scale_mode["mode"], antialias=latent_scale_mode["antialias"])
  789. # Avoid making the inpainting conditioning unless necessary as
  790. # this does need some extra compute to decode / encode the image again.
  791. if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0:
  792. image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples)
  793. else:
  794. image_conditioning = self.txt2img_image_conditioning(samples)
  795. else:
  796. decoded_samples = decode_first_stage(self.sd_model, samples)
  797. lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
  798. batch_images = []
  799. for i, x_sample in enumerate(lowres_samples):
  800. x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
  801. x_sample = x_sample.astype(np.uint8)
  802. image = Image.fromarray(x_sample)
  803. save_intermediate(image, i)
  804. image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler)
  805. image = np.array(image).astype(np.float32) / 255.0
  806. image = np.moveaxis(image, 2, 0)
  807. batch_images.append(image)
  808. decoded_samples = torch.from_numpy(np.array(batch_images))
  809. decoded_samples = decoded_samples.to(shared.device)
  810. decoded_samples = 2. * decoded_samples - 1.
  811. samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
  812. image_conditioning = self.img2img_image_conditioning(decoded_samples, samples)
  813. shared.state.nextjob()
  814. img2img_sampler_name = self.hr_sampler_name or self.sampler_name
  815. if self.sampler_name in ['PLMS', 'UniPC']: # PLMS/UniPC do not support img2img so we just silently switch to DDIM
  816. img2img_sampler_name = 'DDIM'
  817. self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model)
  818. samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]
  819. noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self)
  820. # GC now before running the next img2img to prevent running out of memory
  821. x = None
  822. devices.torch_gc()
  823. if not self.disable_extra_networks:
  824. with devices.autocast():
  825. extra_networks.activate(self, self.hr_extra_network_data)
  826. with devices.autocast():
  827. self.calculate_hr_conds()
  828. sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True))
  829. if self.scripts is not None:
  830. self.scripts.before_hr(self)
  831. samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
  832. sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio())
  833. self.is_hr_pass = False
  834. return samples
  835. def close(self):
  836. super().close()
  837. self.hr_c = None
  838. self.hr_uc = None
  839. if not opts.experimental_persistent_cond_cache:
  840. StableDiffusionProcessingTxt2Img.cached_hr_uc = [None, None]
  841. StableDiffusionProcessingTxt2Img.cached_hr_c = [None, None]
  842. def setup_prompts(self):
  843. super().setup_prompts()
  844. if not self.enable_hr:
  845. return
  846. if self.hr_prompt == '':
  847. self.hr_prompt = self.prompt
  848. if self.hr_negative_prompt == '':
  849. self.hr_negative_prompt = self.negative_prompt
  850. if type(self.hr_prompt) == list:
  851. self.all_hr_prompts = self.hr_prompt
  852. else:
  853. self.all_hr_prompts = self.batch_size * self.n_iter * [self.hr_prompt]
  854. if type(self.hr_negative_prompt) == list:
  855. self.all_hr_negative_prompts = self.hr_negative_prompt
  856. else:
  857. self.all_hr_negative_prompts = self.batch_size * self.n_iter * [self.hr_negative_prompt]
  858. self.all_hr_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_hr_prompts]
  859. self.all_hr_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_hr_negative_prompts]
  860. def calculate_hr_conds(self):
  861. if self.hr_c is not None:
  862. return
  863. self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.hr_negative_prompts, self.steps * self.step_multiplier, [self.cached_hr_uc, self.cached_uc], self.hr_extra_network_data)
  864. self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.hr_prompts, self.steps * self.step_multiplier, [self.cached_hr_c, self.cached_c], self.hr_extra_network_data)
  865. def setup_conds(self):
  866. super().setup_conds()
  867. self.hr_uc = None
  868. self.hr_c = None
  869. if self.enable_hr:
  870. if shared.opts.hires_fix_use_firstpass_conds:
  871. self.calculate_hr_conds()
  872. elif lowvram.is_enabled(shared.sd_model): # if in lowvram mode, we need to calculate conds right away, before the cond NN is unloaded
  873. with devices.autocast():
  874. extra_networks.activate(self, self.hr_extra_network_data)
  875. self.calculate_hr_conds()
  876. with devices.autocast():
  877. extra_networks.activate(self, self.extra_network_data)
  878. def parse_extra_network_prompts(self):
  879. res = super().parse_extra_network_prompts()
  880. if self.enable_hr:
  881. self.hr_prompts = self.all_hr_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
  882. self.hr_negative_prompts = self.all_hr_negative_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
  883. self.hr_prompts, self.hr_extra_network_data = extra_networks.parse_prompts(self.hr_prompts)
  884. return res
  885. class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
  886. sampler = None
  887. def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: float = None, mask: Any = None, mask_blur: int = None, mask_blur_x: int = 4, mask_blur_y: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs):
  888. super().__init__(**kwargs)
  889. self.init_images = init_images
  890. self.resize_mode: int = resize_mode
  891. self.denoising_strength: float = denoising_strength
  892. self.image_cfg_scale: float = image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None
  893. self.init_latent = None
  894. self.image_mask = mask
  895. self.latent_mask = None
  896. self.mask_for_overlay = None
  897. if mask_blur is not None:
  898. mask_blur_x = mask_blur
  899. mask_blur_y = mask_blur
  900. self.mask_blur_x = mask_blur_x
  901. self.mask_blur_y = mask_blur_y
  902. self.inpainting_fill = inpainting_fill
  903. self.inpaint_full_res = inpaint_full_res
  904. self.inpaint_full_res_padding = inpaint_full_res_padding
  905. self.inpainting_mask_invert = inpainting_mask_invert
  906. self.initial_noise_multiplier = opts.initial_noise_multiplier if initial_noise_multiplier is None else initial_noise_multiplier
  907. self.mask = None
  908. self.nmask = None
  909. self.image_conditioning = None
  910. def init(self, all_prompts, all_seeds, all_subseeds):
  911. self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
  912. crop_region = None
  913. image_mask = self.image_mask
  914. if image_mask is not None:
  915. image_mask = image_mask.convert('L')
  916. if self.inpainting_mask_invert:
  917. image_mask = ImageOps.invert(image_mask)
  918. if self.mask_blur_x > 0:
  919. np_mask = np.array(image_mask)
  920. kernel_size = 2 * int(4 * self.mask_blur_x + 0.5) + 1
  921. np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), self.mask_blur_x)
  922. image_mask = Image.fromarray(np_mask)
  923. if self.mask_blur_y > 0:
  924. np_mask = np.array(image_mask)
  925. kernel_size = 2 * int(4 * self.mask_blur_y + 0.5) + 1
  926. np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), self.mask_blur_y)
  927. image_mask = Image.fromarray(np_mask)
  928. if self.inpaint_full_res:
  929. self.mask_for_overlay = image_mask
  930. mask = image_mask.convert('L')
  931. crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
  932. crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
  933. x1, y1, x2, y2 = crop_region
  934. mask = mask.crop(crop_region)
  935. image_mask = images.resize_image(2, mask, self.width, self.height)
  936. self.paste_to = (x1, y1, x2-x1, y2-y1)
  937. else:
  938. image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
  939. np_mask = np.array(image_mask)
  940. np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
  941. self.mask_for_overlay = Image.fromarray(np_mask)
  942. self.overlay_images = []
  943. latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
  944. add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
  945. if add_color_corrections:
  946. self.color_corrections = []
  947. imgs = []
  948. for img in self.init_images:
  949. # Save init image
  950. if opts.save_init_img:
  951. self.init_img_hash = hashlib.md5(img.tobytes()).hexdigest()
  952. images.save_image(img, path=opts.outdir_init_images, basename=None, forced_filename=self.init_img_hash, save_to_dirs=False)
  953. image = images.flatten(img, opts.img2img_background_color)
  954. if crop_region is None and self.resize_mode != 3:
  955. image = images.resize_image(self.resize_mode, image, self.width, self.height)
  956. if image_mask is not None:
  957. image_masked = Image.new('RGBa', (image.width, image.height))
  958. image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
  959. self.overlay_images.append(image_masked.convert('RGBA'))
  960. # crop_region is not None if we are doing inpaint full res
  961. if crop_region is not None:
  962. image = image.crop(crop_region)
  963. image = images.resize_image(2, image, self.width, self.height)
  964. if image_mask is not None:
  965. if self.inpainting_fill != 1:
  966. image = masking.fill(image, latent_mask)
  967. if add_color_corrections:
  968. self.color_corrections.append(setup_color_correction(image))
  969. image = np.array(image).astype(np.float32) / 255.0
  970. image = np.moveaxis(image, 2, 0)
  971. imgs.append(image)
  972. if len(imgs) == 1:
  973. batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
  974. if self.overlay_images is not None:
  975. self.overlay_images = self.overlay_images * self.batch_size
  976. if self.color_corrections is not None and len(self.color_corrections) == 1:
  977. self.color_corrections = self.color_corrections * self.batch_size
  978. elif len(imgs) <= self.batch_size:
  979. self.batch_size = len(imgs)
  980. batch_images = np.array(imgs)
  981. else:
  982. raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")
  983. image = torch.from_numpy(batch_images)
  984. image = 2. * image - 1.
  985. image = image.to(shared.device)
  986. self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
  987. if self.resize_mode == 3:
  988. self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
  989. if image_mask is not None:
  990. init_mask = latent_mask
  991. latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
  992. latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
  993. latmask = latmask[0]
  994. latmask = np.around(latmask)
  995. latmask = np.tile(latmask[None], (4, 1, 1))
  996. self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
  997. self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)
  998. # this needs to be fixed to be done in sample() using actual seeds for batches
  999. if self.inpainting_fill == 2:
  1000. self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
  1001. elif self.inpainting_fill == 3:
  1002. self.init_latent = self.init_latent * self.mask
  1003. self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, image_mask)
  1004. def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
  1005. x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
  1006. if self.initial_noise_multiplier != 1.0:
  1007. self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier
  1008. x *= self.initial_noise_multiplier
  1009. samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
  1010. if self.mask is not None:
  1011. samples = samples * self.nmask + self.init_latent * self.mask
  1012. del x
  1013. devices.torch_gc()
  1014. return samples
  1015. def get_token_merging_ratio(self, for_hr=False):
  1016. return self.token_merging_ratio or ("token_merging_ratio" in self.override_settings and opts.token_merging_ratio) or opts.token_merging_ratio_img2img or opts.token_merging_ratio