123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535 |
- from collections import namedtuple, deque
- import numpy as np
- from math import floor
- import torch
- import tqdm
- from PIL import Image
- import inspect
- import k_diffusion.sampling
- import torchsde._brownian.brownian_interval
- import ldm.models.diffusion.ddim
- import ldm.models.diffusion.plms
- from modules import prompt_parser, devices, processing, images, sd_vae_approx
- from modules.shared import opts, cmd_opts, state
- import modules.shared as shared
- from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
- SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
- samplers_k_diffusion = [
- ('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {}),
- ('Euler', 'sample_euler', ['k_euler'], {}),
- ('LMS', 'sample_lms', ['k_lms'], {}),
- ('Heun', 'sample_heun', ['k_heun'], {}),
- ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}),
- ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True}),
- ('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {}),
- ('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
- ('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {}),
- ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}),
- ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}),
- ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
- ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}),
- ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}),
- ('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras'}),
- ('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
- ('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras'}),
- ]
- samplers_data_k_diffusion = [
- SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
- for label, funcname, aliases, options in samplers_k_diffusion
- if hasattr(k_diffusion.sampling, funcname)
- ]
- all_samplers = [
- *samplers_data_k_diffusion,
- SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
- SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
- ]
- all_samplers_map = {x.name: x for x in all_samplers}
- samplers = []
- samplers_for_img2img = []
- samplers_map = {}
- def create_sampler(name, model):
- if name is not None:
- config = all_samplers_map.get(name, None)
- else:
- config = all_samplers[0]
- assert config is not None, f'bad sampler name: {name}'
- sampler = config.constructor(model)
- sampler.config = config
- return sampler
- def set_samplers():
- global samplers, samplers_for_img2img
- hidden = set(opts.hide_samplers)
- hidden_img2img = set(opts.hide_samplers + ['PLMS'])
- samplers = [x for x in all_samplers if x.name not in hidden]
- samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img]
- samplers_map.clear()
- for sampler in all_samplers:
- samplers_map[sampler.name.lower()] = sampler.name
- for alias in sampler.aliases:
- samplers_map[alias.lower()] = sampler.name
- set_samplers()
- sampler_extra_params = {
- 'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
- 'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
- 'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
- }
- def setup_img2img_steps(p, steps=None):
- if opts.img2img_fix_steps or steps is not None:
- steps = int((steps or p.steps) / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
- t_enc = p.steps - 1
- else:
- steps = p.steps
- t_enc = int(min(p.denoising_strength, 0.999) * steps)
- return steps, t_enc
- approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2}
- def single_sample_to_image(sample, approximation=None):
- if approximation is None:
- approximation = approximation_indexes.get(opts.show_progress_type, 0)
- if approximation == 2:
- x_sample = sd_vae_approx.cheap_approximation(sample)
- elif approximation == 1:
- x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach()
- else:
- x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0]
- x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
- x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
- x_sample = x_sample.astype(np.uint8)
- return Image.fromarray(x_sample)
- def sample_to_image(samples, index=0, approximation=None):
- return single_sample_to_image(samples[index], approximation)
- def samples_to_image_grid(samples, approximation=None):
- return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples])
- def store_latent(decoded):
- state.current_latent = decoded
- if opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0:
- if not shared.parallel_processing_allowed:
- shared.state.current_image = sample_to_image(decoded)
- class InterruptedException(BaseException):
- pass
- class VanillaStableDiffusionSampler:
- def __init__(self, constructor, sd_model):
- self.sampler = constructor(sd_model)
- self.is_plms = hasattr(self.sampler, 'p_sample_plms')
- self.orig_p_sample_ddim = self.sampler.p_sample_plms if self.is_plms else self.sampler.p_sample_ddim
- self.mask = None
- self.nmask = None
- self.init_latent = None
- self.sampler_noises = None
- self.step = 0
- self.stop_at = None
- self.eta = None
- self.default_eta = 0.0
- self.config = None
- self.last_latent = None
- self.conditioning_key = sd_model.model.conditioning_key
- def number_of_needed_noises(self, p):
- return 0
- def launch_sampling(self, steps, func):
- state.sampling_steps = steps
- state.sampling_step = 0
- try:
- return func()
- except InterruptedException:
- return self.last_latent
- def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
- if state.interrupted or state.skipped:
- raise InterruptedException
- if self.stop_at is not None and self.step > self.stop_at:
- raise InterruptedException
- # Have to unwrap the inpainting conditioning here to perform pre-processing
- image_conditioning = None
- if isinstance(cond, dict):
- image_conditioning = cond["c_concat"][0]
- cond = cond["c_crossattn"][0]
- unconditional_conditioning = unconditional_conditioning["c_crossattn"][0]
- conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
- unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
- assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers'
- cond = tensor
- # for DDIM, shapes must match, we can't just process cond and uncond independently;
- # filling unconditional_conditioning with repeats of the last vector to match length is
- # not 100% correct but should work well enough
- if unconditional_conditioning.shape[1] < cond.shape[1]:
- last_vector = unconditional_conditioning[:, -1:]
- last_vector_repeated = last_vector.repeat([1, cond.shape[1] - unconditional_conditioning.shape[1], 1])
- unconditional_conditioning = torch.hstack([unconditional_conditioning, last_vector_repeated])
- elif unconditional_conditioning.shape[1] > cond.shape[1]:
- unconditional_conditioning = unconditional_conditioning[:, :cond.shape[1]]
- if self.mask is not None:
- img_orig = self.sampler.model.q_sample(self.init_latent, ts)
- x_dec = img_orig * self.mask + self.nmask * x_dec
- # Wrap the image conditioning back up since the DDIM code can accept the dict directly.
- # Note that they need to be lists because it just concatenates them later.
- if image_conditioning is not None:
- cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
- unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
- res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
- if self.mask is not None:
- self.last_latent = self.init_latent * self.mask + self.nmask * res[1]
- else:
- self.last_latent = res[1]
- store_latent(self.last_latent)
- self.step += 1
- state.sampling_step = self.step
- shared.total_tqdm.update()
- return res
- def initialize(self, p):
- self.eta = p.eta if p.eta is not None else opts.eta_ddim
- for fieldname in ['p_sample_ddim', 'p_sample_plms']:
- if hasattr(self.sampler, fieldname):
- setattr(self.sampler, fieldname, self.p_sample_ddim_hook)
- self.mask = p.mask if hasattr(p, 'mask') else None
- self.nmask = p.nmask if hasattr(p, 'nmask') else None
- def adjust_steps_if_invalid(self, p, num_steps):
- if (self.config.name == 'DDIM' and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'):
- valid_step = 999 / (1000 // num_steps)
- if valid_step == floor(valid_step):
- return int(valid_step) + 1
-
- return num_steps
- def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
- steps, t_enc = setup_img2img_steps(p, steps)
- steps = self.adjust_steps_if_invalid(p, steps)
- self.initialize(p)
- self.sampler.make_schedule(ddim_num_steps=steps, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False)
- x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
- self.init_latent = x
- self.last_latent = x
- self.step = 0
- # Wrap the conditioning models with additional image conditioning for inpainting model
- if image_conditioning is not None:
- conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
- unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
-
-
- samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
- return samples
- def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
- self.initialize(p)
- self.init_latent = None
- self.last_latent = x
- self.step = 0
- steps = self.adjust_steps_if_invalid(p, steps or p.steps)
- # Wrap the conditioning models with additional image conditioning for inpainting model
- # dummy_for_plms is needed because PLMS code checks the first item in the dict to have the right shape
- if image_conditioning is not None:
- conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_concat": [image_conditioning]}
- unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_concat": [image_conditioning]}
- samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0])
- return samples_ddim
- class CFGDenoiser(torch.nn.Module):
- def __init__(self, model):
- super().__init__()
- self.inner_model = model
- self.mask = None
- self.nmask = None
- self.init_latent = None
- self.step = 0
- def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
- denoised_uncond = x_out[-uncond.shape[0]:]
- denoised = torch.clone(denoised_uncond)
- for i, conds in enumerate(conds_list):
- for cond_index, weight in conds:
- denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
- return denoised
- def forward(self, x, sigma, uncond, cond, cond_scale, image_cond):
- if state.interrupted or state.skipped:
- raise InterruptedException
- conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
- uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
- batch_size = len(conds_list)
- repeats = [len(conds_list[i]) for i in range(batch_size)]
- x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
- image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond])
- sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
- denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps)
- cfg_denoiser_callback(denoiser_params)
- x_in = denoiser_params.x
- image_cond_in = denoiser_params.image_cond
- sigma_in = denoiser_params.sigma
- if tensor.shape[1] == uncond.shape[1]:
- cond_in = torch.cat([tensor, uncond])
- if shared.batch_cond_uncond:
- x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]})
- else:
- x_out = torch.zeros_like(x_in)
- for batch_offset in range(0, x_out.shape[0], batch_size):
- a = batch_offset
- b = a + batch_size
- x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]})
- else:
- x_out = torch.zeros_like(x_in)
- batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
- for batch_offset in range(0, tensor.shape[0], batch_size):
- a = batch_offset
- b = min(a + batch_size, tensor.shape[0])
- x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [tensor[a:b]], "c_concat": [image_cond_in[a:b]]})
- x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]})
- denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
- if self.mask is not None:
- denoised = self.init_latent * self.mask + self.nmask * denoised
- self.step += 1
- return denoised
- class TorchHijack:
- def __init__(self, sampler_noises):
- # Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
- # implementation.
- self.sampler_noises = deque(sampler_noises)
- def __getattr__(self, item):
- if item == 'randn_like':
- return self.randn_like
- if hasattr(torch, item):
- return getattr(torch, item)
- raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
- def randn_like(self, x):
- if self.sampler_noises:
- noise = self.sampler_noises.popleft()
- if noise.shape == x.shape:
- return noise
- if x.device.type == 'mps':
- return torch.randn_like(x, device=devices.cpu).to(x.device)
- else:
- return torch.randn_like(x)
- # MPS fix for randn in torchsde
- def torchsde_randn(size, dtype, device, seed):
- if device.type == 'mps':
- generator = torch.Generator(devices.cpu).manual_seed(int(seed))
- return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device)
- else:
- generator = torch.Generator(device).manual_seed(int(seed))
- return torch.randn(size, dtype=dtype, device=device, generator=generator)
- torchsde._brownian.brownian_interval._randn = torchsde_randn
- class KDiffusionSampler:
- def __init__(self, funcname, sd_model):
- denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
- self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
- self.funcname = funcname
- self.func = getattr(k_diffusion.sampling, self.funcname)
- self.extra_params = sampler_extra_params.get(funcname, [])
- self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
- self.sampler_noises = None
- self.stop_at = None
- self.eta = None
- self.default_eta = 1.0
- self.config = None
- self.last_latent = None
- self.conditioning_key = sd_model.model.conditioning_key
- def callback_state(self, d):
- step = d['i']
- latent = d["denoised"]
- store_latent(latent)
- self.last_latent = latent
- if self.stop_at is not None and step > self.stop_at:
- raise InterruptedException
- state.sampling_step = step
- shared.total_tqdm.update()
- def launch_sampling(self, steps, func):
- state.sampling_steps = steps
- state.sampling_step = 0
- try:
- return func()
- except InterruptedException:
- return self.last_latent
- def number_of_needed_noises(self, p):
- return p.steps
- def initialize(self, p):
- self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
- self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
- self.model_wrap.step = 0
- self.eta = p.eta or opts.eta_ancestral
- k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
- extra_params_kwargs = {}
- for param_name in self.extra_params:
- if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
- extra_params_kwargs[param_name] = getattr(p, param_name)
- if 'eta' in inspect.signature(self.func).parameters:
- extra_params_kwargs['eta'] = self.eta
- return extra_params_kwargs
- def get_sigmas(self, p, steps):
- if p.sampler_noise_scheduler_override:
- sigmas = p.sampler_noise_scheduler_override(steps)
- elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
- sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device)
- else:
- sigmas = self.model_wrap.get_sigmas(steps)
- if self.config is not None and self.config.options.get('discard_next_to_last_sigma', False):
- sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
- return sigmas
- def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
- steps, t_enc = setup_img2img_steps(p, steps)
- sigmas = self.get_sigmas(p, steps)
- sigma_sched = sigmas[steps - t_enc - 1:]
- xi = x + noise * sigma_sched[0]
-
- extra_params_kwargs = self.initialize(p)
- if 'sigma_min' in inspect.signature(self.func).parameters:
- ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
- extra_params_kwargs['sigma_min'] = sigma_sched[-2]
- if 'sigma_max' in inspect.signature(self.func).parameters:
- extra_params_kwargs['sigma_max'] = sigma_sched[0]
- if 'n' in inspect.signature(self.func).parameters:
- extra_params_kwargs['n'] = len(sigma_sched) - 1
- if 'sigma_sched' in inspect.signature(self.func).parameters:
- extra_params_kwargs['sigma_sched'] = sigma_sched
- if 'sigmas' in inspect.signature(self.func).parameters:
- extra_params_kwargs['sigmas'] = sigma_sched
- self.model_wrap_cfg.init_latent = x
- self.last_latent = x
- samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args={
- 'cond': conditioning,
- 'image_cond': image_conditioning,
- 'uncond': unconditional_conditioning,
- 'cond_scale': p.cfg_scale
- }, disable=False, callback=self.callback_state, **extra_params_kwargs))
- return samples
- def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None):
- steps = steps or p.steps
- sigmas = self.get_sigmas(p, steps)
- x = x * sigmas[0]
- extra_params_kwargs = self.initialize(p)
- if 'sigma_min' in inspect.signature(self.func).parameters:
- extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
- extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
- if 'n' in inspect.signature(self.func).parameters:
- extra_params_kwargs['n'] = steps
- else:
- extra_params_kwargs['sigmas'] = sigmas
- self.last_latent = x
- samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
- 'cond': conditioning,
- 'image_cond': image_conditioning,
- 'uncond': unconditional_conditioning,
- 'cond_scale': p.cfg_scale
- }, disable=False, callback=self.callback_state, **extra_params_kwargs))
- return samples
|