123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187 |
- import logging
- import sys
- import numpy as np
- import torch
- from PIL import Image
- from tqdm import tqdm
- from modules import modelloader, devices, script_callbacks, shared
- from modules.shared import opts, state
- from modules.upscaler import Upscaler, UpscalerData
- SWINIR_MODEL_URL = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN.pth"
- logger = logging.getLogger(__name__)
- class UpscalerSwinIR(Upscaler):
- def __init__(self, dirname):
- self._cached_model = None # keep the model when SWIN_torch_compile is on to prevent re-compile every runs
- self._cached_model_config = None # to clear '_cached_model' when changing model (v1/v2) or settings
- self.name = "SwinIR"
- self.model_url = SWINIR_MODEL_URL
- self.model_name = "SwinIR 4x"
- self.user_path = dirname
- super().__init__()
- scalers = []
- model_files = self.find_models(ext_filter=[".pt", ".pth"])
- for model in model_files:
- if model.startswith("http"):
- name = self.model_name
- else:
- name = modelloader.friendly_name(model)
- model_data = UpscalerData(name, model, self)
- scalers.append(model_data)
- self.scalers = scalers
- def do_upscale(self, img: Image.Image, model_file: str) -> Image.Image:
- current_config = (model_file, opts.SWIN_tile)
- device = self._get_device()
- if self._cached_model_config == current_config:
- model = self._cached_model
- else:
- try:
- model = self.load_model(model_file)
- except Exception as e:
- print(f"Failed loading SwinIR model {model_file}: {e}", file=sys.stderr)
- return img
- self._cached_model = model
- self._cached_model_config = current_config
- img = upscale(
- img,
- model,
- tile=opts.SWIN_tile,
- tile_overlap=opts.SWIN_tile_overlap,
- device=device,
- )
- devices.torch_gc()
- return img
- def load_model(self, path, scale=4):
- if path.startswith("http"):
- filename = modelloader.load_file_from_url(
- url=path,
- model_dir=self.model_download_path,
- file_name=f"{self.model_name.replace(' ', '_')}.pth",
- )
- else:
- filename = path
- model = modelloader.load_spandrel_model(
- filename,
- device=self._get_device(),
- dtype=devices.dtype,
- expected_architecture="SwinIR",
- )
- if getattr(opts, 'SWIN_torch_compile', False):
- try:
- model = torch.compile(model)
- except Exception:
- logger.warning("Failed to compile SwinIR model, fallback to JIT", exc_info=True)
- return model
- def _get_device(self):
- return devices.get_device_for('swinir')
- def upscale(
- img,
- model,
- *,
- tile: int,
- tile_overlap: int,
- window_size=8,
- scale=4,
- device,
- ):
- img = np.array(img)
- img = img[:, :, ::-1]
- img = np.moveaxis(img, 2, 0) / 255
- img = torch.from_numpy(img).float()
- img = img.unsqueeze(0).to(device, dtype=devices.dtype)
- with torch.no_grad(), devices.autocast():
- _, _, h_old, w_old = img.size()
- h_pad = (h_old // window_size + 1) * window_size - h_old
- w_pad = (w_old // window_size + 1) * window_size - w_old
- img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :]
- img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad]
- output = inference(
- img,
- model,
- tile=tile,
- tile_overlap=tile_overlap,
- window_size=window_size,
- scale=scale,
- device=device,
- )
- output = output[..., : h_old * scale, : w_old * scale]
- output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
- if output.ndim == 3:
- output = np.transpose(
- output[[2, 1, 0], :, :], (1, 2, 0)
- ) # CHW-RGB to HCW-BGR
- output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
- return Image.fromarray(output, "RGB")
- def inference(
- img,
- model,
- *,
- tile: int,
- tile_overlap: int,
- window_size: int,
- scale: int,
- device,
- ):
- # test the image tile by tile
- b, c, h, w = img.size()
- tile = min(tile, h, w)
- assert tile % window_size == 0, "tile size should be a multiple of window_size"
- sf = scale
- stride = tile - tile_overlap
- h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
- w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
- E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=device).type_as(img)
- W = torch.zeros_like(E, dtype=devices.dtype, device=device)
- with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
- for h_idx in h_idx_list:
- if state.interrupted or state.skipped:
- break
- for w_idx in w_idx_list:
- if state.interrupted or state.skipped:
- break
- in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
- out_patch = model(in_patch)
- out_patch_mask = torch.ones_like(out_patch)
- E[
- ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
- ].add_(out_patch)
- W[
- ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
- ].add_(out_patch_mask)
- pbar.update(1)
- output = E.div_(W)
- return output
- def on_ui_settings():
- import gradio as gr
- shared.opts.add_option("SWIN_tile", shared.OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling")))
- shared.opts.add_option("SWIN_tile_overlap", shared.OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}, section=('upscaling', "Upscaling")))
- shared.opts.add_option("SWIN_torch_compile", shared.OptionInfo(False, "Use torch.compile to accelerate SwinIR.", gr.Checkbox, {"interactive": True}, section=('upscaling', "Upscaling")).info("Takes longer on first run"))
- script_callbacks.on_ui_settings(on_ui_settings)
|