123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170 |
- import torch
- from modules import devices, rng_philox, shared
- def randn(seed, shape, generator=None):
- """Generate a tensor with random numbers from a normal distribution using seed.
- Uses the seed parameter to set the global torch seed; to generate more with that seed, use randn_like/randn_without_seed."""
- manual_seed(seed)
- if shared.opts.randn_source == "NV":
- return torch.asarray((generator or nv_rng).randn(shape), device=devices.device)
- if shared.opts.randn_source == "CPU" or devices.device.type == 'mps':
- return torch.randn(shape, device=devices.cpu, generator=generator).to(devices.device)
- return torch.randn(shape, device=devices.device, generator=generator)
- def randn_local(seed, shape):
- """Generate a tensor with random numbers from a normal distribution using seed.
- Does not change the global random number generator. You can only generate the seed's first tensor using this function."""
- if shared.opts.randn_source == "NV":
- rng = rng_philox.Generator(seed)
- return torch.asarray(rng.randn(shape), device=devices.device)
- local_device = devices.cpu if shared.opts.randn_source == "CPU" or devices.device.type == 'mps' else devices.device
- local_generator = torch.Generator(local_device).manual_seed(int(seed))
- return torch.randn(shape, device=local_device, generator=local_generator).to(devices.device)
- def randn_like(x):
- """Generate a tensor with random numbers from a normal distribution using the previously initialized genrator.
- Use either randn() or manual_seed() to initialize the generator."""
- if shared.opts.randn_source == "NV":
- return torch.asarray(nv_rng.randn(x.shape), device=x.device, dtype=x.dtype)
- if shared.opts.randn_source == "CPU" or x.device.type == 'mps':
- return torch.randn_like(x, device=devices.cpu).to(x.device)
- return torch.randn_like(x)
- def randn_without_seed(shape, generator=None):
- """Generate a tensor with random numbers from a normal distribution using the previously initialized genrator.
- Use either randn() or manual_seed() to initialize the generator."""
- if shared.opts.randn_source == "NV":
- return torch.asarray((generator or nv_rng).randn(shape), device=devices.device)
- if shared.opts.randn_source == "CPU" or devices.device.type == 'mps':
- return torch.randn(shape, device=devices.cpu, generator=generator).to(devices.device)
- return torch.randn(shape, device=devices.device, generator=generator)
- def manual_seed(seed):
- """Set up a global random number generator using the specified seed."""
- if shared.opts.randn_source == "NV":
- global nv_rng
- nv_rng = rng_philox.Generator(seed)
- return
- torch.manual_seed(seed)
- def create_generator(seed):
- if shared.opts.randn_source == "NV":
- return rng_philox.Generator(seed)
- device = devices.cpu if shared.opts.randn_source == "CPU" or devices.device.type == 'mps' else devices.device
- generator = torch.Generator(device).manual_seed(int(seed))
- return generator
- # from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
- def slerp(val, low, high):
- low_norm = low/torch.norm(low, dim=1, keepdim=True)
- high_norm = high/torch.norm(high, dim=1, keepdim=True)
- dot = (low_norm*high_norm).sum(1)
- if dot.mean() > 0.9995:
- return low * val + high * (1 - val)
- omega = torch.acos(dot)
- so = torch.sin(omega)
- res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
- return res
- class ImageRNG:
- def __init__(self, shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0):
- self.shape = shape
- self.seeds = seeds
- self.subseeds = subseeds
- self.subseed_strength = subseed_strength
- self.seed_resize_from_h = seed_resize_from_h
- self.seed_resize_from_w = seed_resize_from_w
- self.generators = [create_generator(seed) for seed in seeds]
- self.is_first = True
- def first(self):
- noise_shape = self.shape if self.seed_resize_from_h <= 0 or self.seed_resize_from_w <= 0 else (self.shape[0], self.seed_resize_from_h // 8, self.seed_resize_from_w // 8)
- xs = []
- for i, (seed, generator) in enumerate(zip(self.seeds, self.generators)):
- subnoise = None
- if self.subseeds is not None and self.subseed_strength != 0:
- subseed = 0 if i >= len(self.subseeds) else self.subseeds[i]
- subnoise = randn(subseed, noise_shape)
- if noise_shape != self.shape:
- noise = randn(seed, noise_shape)
- else:
- noise = randn(seed, self.shape, generator=generator)
- if subnoise is not None:
- noise = slerp(self.subseed_strength, noise, subnoise)
- if noise_shape != self.shape:
- x = randn(seed, self.shape, generator=generator)
- dx = (self.shape[2] - noise_shape[2]) // 2
- dy = (self.shape[1] - noise_shape[1]) // 2
- w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx
- h = noise_shape[1] if dy >= 0 else noise_shape[1] + 2 * dy
- tx = 0 if dx < 0 else dx
- ty = 0 if dy < 0 else dy
- dx = max(-dx, 0)
- dy = max(-dy, 0)
- x[:, ty:ty + h, tx:tx + w] = noise[:, dy:dy + h, dx:dx + w]
- noise = x
- xs.append(noise)
- eta_noise_seed_delta = shared.opts.eta_noise_seed_delta or 0
- if eta_noise_seed_delta:
- self.generators = [create_generator(seed + eta_noise_seed_delta) for seed in self.seeds]
- return torch.stack(xs).to(shared.device)
- def next(self):
- if self.is_first:
- self.is_first = False
- return self.first()
- xs = []
- for generator in self.generators:
- x = randn_without_seed(self.shape, generator=generator)
- xs.append(x)
- return torch.stack(xs).to(shared.device)
- devices.randn = randn
- devices.randn_local = randn_local
- devices.randn_like = randn_like
- devices.randn_without_seed = randn_without_seed
- devices.manual_seed = manual_seed
|