123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409 |
- import contextlib
- import json
- import math
- import os
- import sys
- import torch
- import numpy as np
- from PIL import Image, ImageFilter, ImageOps
- import random
- from modules.sd_hijack import model_hijack
- from modules.sd_samplers import samplers, samplers_for_img2img
- from modules.shared import opts, cmd_opts, state
- import modules.shared as shared
- import modules.gfpgan_model as gfpgan
- import modules.images as images
- # some of those options should not be changed at all because they would break the model, so I removed them from options.
- opt_C = 4
- opt_f = 8
- def torch_gc():
- if torch.cuda.is_available():
- torch.cuda.empty_cache()
- torch.cuda.ipc_collect()
- class StableDiffusionProcessing:
- def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", seed=-1, sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512, prompt_matrix=False, use_GFPGAN=False, do_not_save_samples=False, do_not_save_grid=False, extra_generation_params=None, overlay_images=None, negative_prompt=None):
- self.sd_model = sd_model
- self.outpath_samples: str = outpath_samples
- self.outpath_grids: str = outpath_grids
- self.prompt: str = prompt
- self.negative_prompt: str = (negative_prompt or "")
- self.seed: int = seed
- self.sampler_index: int = sampler_index
- self.batch_size: int = batch_size
- self.n_iter: int = n_iter
- self.steps: int = steps
- self.cfg_scale: float = cfg_scale
- self.width: int = width
- self.height: int = height
- self.prompt_matrix: bool = prompt_matrix
- self.use_GFPGAN: bool = use_GFPGAN
- self.do_not_save_samples: bool = do_not_save_samples
- self.do_not_save_grid: bool = do_not_save_grid
- self.extra_generation_params: dict = extra_generation_params
- self.overlay_images = overlay_images
- self.paste_to = None
- def init(self):
- pass
- def sample(self, x, conditioning, unconditional_conditioning):
- raise NotImplementedError()
- class Processed:
- def __init__(self, p: StableDiffusionProcessing, images_list, seed, info):
- self.images = images_list
- self.prompt = p.prompt
- self.seed = seed
- self.info = info
- self.width = p.width
- self.height = p.height
- self.sampler = samplers[p.sampler_index].name
- self.cfg_scale = p.cfg_scale
- self.steps = p.steps
- def js(self):
- obj = {
- "prompt": self.prompt,
- "seed": int(self.seed),
- "width": self.width,
- "height": self.height,
- "sampler": self.sampler,
- "cfg_scale": self.cfg_scale,
- "steps": self.steps,
- }
- return json.dumps(obj)
- def create_random_tensors(shape, seeds):
- xs = []
- for seed in seeds:
- torch.manual_seed(seed)
- # randn results depend on device; gpu and cpu get different results for same seed;
- # the way I see it, it's better to do this on CPU, so that everyone gets same result;
- # but the original script had it like this so I do not dare change it for now because
- # it will break everyone's seeds.
- xs.append(torch.randn(shape, device=shared.device))
- x = torch.stack(xs)
- return x
- def process_images(p: StableDiffusionProcessing) -> Processed:
- """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
- prompt = p.prompt
- assert p.prompt is not None
- torch_gc()
- seed = int(random.randrange(4294967294) if p.seed == -1 else p.seed)
- os.makedirs(p.outpath_samples, exist_ok=True)
- os.makedirs(p.outpath_grids, exist_ok=True)
- comments = []
- prompt_matrix_parts = []
- if p.prompt_matrix:
- all_prompts = []
- prompt_matrix_parts = prompt.split("|")
- combination_count = 2 ** (len(prompt_matrix_parts) - 1)
- for combination_num in range(combination_count):
- selected_prompts = [text.strip().strip(',') for n, text in enumerate(prompt_matrix_parts[1:]) if combination_num & (1 << n)]
- if opts.prompt_matrix_add_to_start:
- selected_prompts = selected_prompts + [prompt_matrix_parts[0]]
- else:
- selected_prompts = [prompt_matrix_parts[0]] + selected_prompts
- all_prompts.append(", ".join(selected_prompts))
- p.n_iter = math.ceil(len(all_prompts) / p.batch_size)
- all_seeds = len(all_prompts) * [seed]
- print(f"Prompt matrix will create {len(all_prompts)} images using a total of {p.n_iter} batches.")
- else:
- all_prompts = p.batch_size * p.n_iter * [prompt]
- all_seeds = [seed + x for x in range(len(all_prompts))]
- def infotext(iteration=0, position_in_batch=0):
- generation_params = {
- "Steps": p.steps,
- "Sampler": samplers[p.sampler_index].name,
- "CFG scale": p.cfg_scale,
- "Seed": all_seeds[position_in_batch + iteration * p.batch_size],
- "GFPGAN": ("GFPGAN" if p.use_GFPGAN else None)
- }
- if p.extra_generation_params is not None:
- generation_params.update(p.extra_generation_params)
- generation_params_text = ", ".join([k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None])
- return f"{prompt}\n{generation_params_text}".strip() + "".join(["\n\n" + x for x in comments])
- if os.path.exists(cmd_opts.embeddings_dir):
- model_hijack.load_textual_inversion_embeddings(cmd_opts.embeddings_dir, p.sd_model)
- output_images = []
- precision_scope = torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
- ema_scope = (contextlib.nullcontext if cmd_opts.lowvram else p.sd_model.ema_scope)
- with torch.no_grad(), precision_scope("cuda"), ema_scope():
- p.init()
- for n in range(p.n_iter):
- if state.interrupted:
- break
- prompts = all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
- seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
- uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
- c = p.sd_model.get_learned_conditioning(prompts)
- if len(model_hijack.comments) > 0:
- comments += model_hijack.comments
- # we manually generate all input noises because each one should have a specific seed
- x = create_random_tensors([opt_C, p.height // opt_f, p.width // opt_f], seeds=seeds)
- if p.n_iter > 1:
- shared.state.job = f"Batch {n+1} out of {p.n_iter}"
- samples_ddim = p.sample(x=x, conditioning=c, unconditional_conditioning=uc)
- x_samples_ddim = p.sd_model.decode_first_stage(samples_ddim)
- x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
- for i, x_sample in enumerate(x_samples_ddim):
- x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
- x_sample = x_sample.astype(np.uint8)
- if p.use_GFPGAN:
- torch_gc()
- x_sample = gfpgan.gfpgan_fix_faces(x_sample)
- image = Image.fromarray(x_sample)
- if p.overlay_images is not None and i < len(p.overlay_images):
- overlay = p.overlay_images[i]
- if p.paste_to is not None:
- x, y, w, h = p.paste_to
- base_image = Image.new('RGBA', (overlay.width, overlay.height))
- image = images.resize_image(1, image, w, h)
- base_image.paste(image, (x, y))
- image = base_image
- image = image.convert('RGBA')
- image.alpha_composite(overlay)
- image = image.convert('RGB')
- if opts.samples_save and not p.do_not_save_samples:
- images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i))
- output_images.append(image)
- unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple
- if not p.do_not_save_grid and not unwanted_grid_because_of_img_count:
- return_grid = opts.return_grid
- if p.prompt_matrix:
- grid = images.image_grid(output_images, p.batch_size, rows=1 << ((len(prompt_matrix_parts)-1)//2))
- try:
- grid = images.draw_prompt_matrix(grid, p.width, p.height, prompt_matrix_parts)
- except Exception:
- import traceback
- print("Error creating prompt_matrix text:", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
- return_grid = True
- else:
- grid = images.image_grid(output_images, p.batch_size)
- if return_grid:
- output_images.insert(0, grid)
- if opts.grid_save:
- images.save_image(grid, p.outpath_grids, "grid", seed, prompt, opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename)
- torch_gc()
- return Processed(p, output_images, seed, infotext())
- class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
- sampler = None
- def init(self):
- self.sampler = samplers[self.sampler_index].constructor(self.sd_model)
- def sample(self, x, conditioning, unconditional_conditioning):
- samples_ddim = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
- return samples_ddim
- def get_crop_region(mask, pad=0):
- h, w = mask.shape
- crop_left = 0
- for i in range(w):
- if not (mask[:, i] == 0).all():
- break
- crop_left += 1
- crop_right = 0
- for i in reversed(range(w)):
- if not (mask[:, i] == 0).all():
- break
- crop_right += 1
- crop_top = 0
- for i in range(h):
- if not (mask[i] == 0).all():
- break
- crop_top += 1
- crop_bottom = 0
- for i in reversed(range(h)):
- if not (mask[i] == 0).all():
- break
- crop_bottom += 1
- return (
- int(max(crop_left-pad, 0)),
- int(max(crop_top-pad, 0)),
- int(min(w - crop_right + pad, w)),
- int(min(h - crop_bottom + pad, h))
- )
- def fill(image, mask):
- image_mod = Image.new('RGBA', (image.width, image.height))
- image_masked = Image.new('RGBa', (image.width, image.height))
- image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert('L')))
- image_masked = image_masked.convert('RGBa')
- for radius, repeats in [(64, 1), (16, 2), (4, 4), (2, 2), (0, 1)]:
- blurred = image_masked.filter(ImageFilter.GaussianBlur(radius)).convert('RGBA')
- for _ in range(repeats):
- image_mod.alpha_composite(blurred)
- return image_mod.convert("RGB")
- class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
- sampler = None
- def __init__(self, init_images=None, resize_mode=0, denoising_strength=0.75, mask=None, mask_blur=4, inpainting_fill=0, inpaint_full_res=True, **kwargs):
- super().__init__(**kwargs)
- self.init_images = init_images
- self.resize_mode: int = resize_mode
- self.denoising_strength: float = denoising_strength
- self.init_latent = None
- self.image_mask = mask
- self.mask_for_overlay = None
- self.mask_blur = mask_blur
- self.inpainting_fill = inpainting_fill
- self.inpaint_full_res = inpaint_full_res
- self.mask = None
- self.nmask = None
- def init(self):
- self.sampler = samplers_for_img2img[self.sampler_index].constructor(self.sd_model)
- crop_region = None
- if self.image_mask is not None:
- if self.mask_blur > 0:
- self.image_mask = self.image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur)).convert('L')
- if self.inpaint_full_res:
- self.mask_for_overlay = self.image_mask
- mask = self.image_mask.convert('L')
- crop_region = get_crop_region(np.array(mask), 64)
- x1, y1, x2, y2 = crop_region
- mask = mask.crop(crop_region)
- self.image_mask = images.resize_image(2, mask, self.width, self.height)
- self.paste_to = (x1, y1, x2-x1, y2-y1)
- else:
- self.image_mask = images.resize_image(self.resize_mode, self.image_mask, self.width, self.height)
- self.mask_for_overlay = self.image_mask
- self.overlay_images = []
- imgs = []
- for img in self.init_images:
- image = img.convert("RGB")
- if crop_region is None:
- image = images.resize_image(self.resize_mode, image, self.width, self.height)
- if self.image_mask is not None:
- if self.inpainting_fill != 1:
- image = fill(image, self.mask_for_overlay)
- image_masked = Image.new('RGBa', (image.width, image.height))
- image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
- self.overlay_images.append(image_masked.convert('RGBA'))
- if crop_region is not None:
- image = image.crop(crop_region)
- image = images.resize_image(2, image, self.width, self.height)
- image = np.array(image).astype(np.float32) / 255.0
- image = np.moveaxis(image, 2, 0)
- imgs.append(image)
- if len(imgs) == 1:
- batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
- if self.overlay_images is not None:
- self.overlay_images = self.overlay_images * self.batch_size
- elif len(imgs) <= self.batch_size:
- self.batch_size = len(imgs)
- batch_images = np.array(imgs)
- else:
- raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")
- image = torch.from_numpy(batch_images)
- image = 2. * image - 1.
- image = image.to(shared.device)
- self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
- if self.image_mask is not None:
- latmask = self.image_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
- latmask = np.moveaxis(np.array(latmask, dtype=np.float64), 2, 0) / 255
- latmask = latmask[0]
- latmask = np.tile(latmask[None], (4, 1, 1))
- self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
- self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)
- if self.inpainting_fill == 2:
- self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], [self.seed + x + 1 for x in range(self.init_latent.shape[0])]) * self.nmask
- elif self.inpainting_fill == 3:
- self.init_latent = self.init_latent * self.mask
- def sample(self, x, conditioning, unconditional_conditioning):
- samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning)
- if self.mask is not None:
- samples = samples * self.nmask + self.init_latent * self.mask
- return samples
|