sd_vae.py 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227
  1. import os
  2. import collections
  3. from modules import paths, shared, devices, script_callbacks, sd_models, extra_networks
  4. import glob
  5. from copy import deepcopy
  6. vae_path = os.path.abspath(os.path.join(paths.models_path, "VAE"))
  7. vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
  8. vae_dict = {}
  9. base_vae = None
  10. loaded_vae_file = None
  11. checkpoint_info = None
  12. checkpoints_loaded = collections.OrderedDict()
  13. def get_base_vae(model):
  14. if base_vae is not None and checkpoint_info == model.sd_checkpoint_info and model:
  15. return base_vae
  16. return None
  17. def store_base_vae(model):
  18. global base_vae, checkpoint_info
  19. if checkpoint_info != model.sd_checkpoint_info:
  20. assert not loaded_vae_file, "Trying to store non-base VAE!"
  21. base_vae = deepcopy(model.first_stage_model.state_dict())
  22. checkpoint_info = model.sd_checkpoint_info
  23. def delete_base_vae():
  24. global base_vae, checkpoint_info
  25. base_vae = None
  26. checkpoint_info = None
  27. def restore_base_vae(model):
  28. global loaded_vae_file
  29. if base_vae is not None and checkpoint_info == model.sd_checkpoint_info:
  30. print("Restoring base VAE")
  31. _load_vae_dict(model, base_vae)
  32. loaded_vae_file = None
  33. delete_base_vae()
  34. def get_filename(filepath):
  35. return os.path.basename(filepath)
  36. def refresh_vae_list():
  37. global vae_dict
  38. vae_dict.clear()
  39. paths = [
  40. os.path.join(sd_models.model_path, '**/*.vae.ckpt'),
  41. os.path.join(sd_models.model_path, '**/*.vae.pt'),
  42. os.path.join(sd_models.model_path, '**/*.vae.safetensors'),
  43. os.path.join(vae_path, '**/*.ckpt'),
  44. os.path.join(vae_path, '**/*.pt'),
  45. os.path.join(vae_path, '**/*.safetensors'),
  46. ]
  47. if shared.cmd_opts.ckpt_dir is not None and os.path.isdir(shared.cmd_opts.ckpt_dir):
  48. paths += [
  49. os.path.join(shared.cmd_opts.ckpt_dir, '**/*.vae.ckpt'),
  50. os.path.join(shared.cmd_opts.ckpt_dir, '**/*.vae.pt'),
  51. os.path.join(shared.cmd_opts.ckpt_dir, '**/*.vae.safetensors'),
  52. ]
  53. if shared.cmd_opts.vae_dir is not None and os.path.isdir(shared.cmd_opts.vae_dir):
  54. paths += [
  55. os.path.join(shared.cmd_opts.vae_dir, '**/*.ckpt'),
  56. os.path.join(shared.cmd_opts.vae_dir, '**/*.pt'),
  57. os.path.join(shared.cmd_opts.vae_dir, '**/*.safetensors'),
  58. ]
  59. candidates = []
  60. for path in paths:
  61. candidates += glob.iglob(path, recursive=True)
  62. for filepath in candidates:
  63. name = get_filename(filepath)
  64. vae_dict[name] = filepath
  65. vae_dict = dict(sorted(vae_dict.items(), key=lambda item: shared.natural_sort_key(item[0])))
  66. def find_vae_near_checkpoint(checkpoint_file):
  67. checkpoint_path = os.path.basename(checkpoint_file).rsplit('.', 1)[0]
  68. for vae_file in vae_dict.values():
  69. if os.path.basename(vae_file).startswith(checkpoint_path):
  70. return vae_file
  71. return None
  72. def resolve_vae(checkpoint_file):
  73. if shared.cmd_opts.vae_path is not None:
  74. return shared.cmd_opts.vae_path, 'from commandline argument'
  75. metadata = extra_networks.get_user_metadata(checkpoint_file)
  76. vae_metadata = metadata.get("vae", None)
  77. if vae_metadata is not None and vae_metadata != "Automatic":
  78. if vae_metadata == "None":
  79. return None, None
  80. vae_from_metadata = vae_dict.get(vae_metadata, None)
  81. if vae_from_metadata is not None:
  82. return vae_from_metadata, "from user metadata"
  83. is_automatic = shared.opts.sd_vae in {"Automatic", "auto"} # "auto" for people with old config
  84. vae_near_checkpoint = find_vae_near_checkpoint(checkpoint_file)
  85. if vae_near_checkpoint is not None and (shared.opts.sd_vae_as_default or is_automatic):
  86. return vae_near_checkpoint, 'found near the checkpoint'
  87. if shared.opts.sd_vae == "None":
  88. return None, None
  89. vae_from_options = vae_dict.get(shared.opts.sd_vae, None)
  90. if vae_from_options is not None:
  91. return vae_from_options, 'specified in settings'
  92. if not is_automatic:
  93. print(f"Couldn't find VAE named {shared.opts.sd_vae}; using None instead")
  94. return None, None
  95. def load_vae_dict(filename, map_location):
  96. vae_ckpt = sd_models.read_state_dict(filename, map_location=map_location)
  97. vae_dict_1 = {k: v for k, v in vae_ckpt.items() if k[0:4] != "loss" and k not in vae_ignore_keys}
  98. return vae_dict_1
  99. def load_vae(model, vae_file=None, vae_source="from unknown source"):
  100. global vae_dict, loaded_vae_file
  101. # save_settings = False
  102. cache_enabled = shared.opts.sd_vae_checkpoint_cache > 0
  103. if vae_file:
  104. if cache_enabled and vae_file in checkpoints_loaded:
  105. # use vae checkpoint cache
  106. print(f"Loading VAE weights {vae_source}: cached {get_filename(vae_file)}")
  107. store_base_vae(model)
  108. _load_vae_dict(model, checkpoints_loaded[vae_file])
  109. else:
  110. assert os.path.isfile(vae_file), f"VAE {vae_source} doesn't exist: {vae_file}"
  111. print(f"Loading VAE weights {vae_source}: {vae_file}")
  112. store_base_vae(model)
  113. vae_dict_1 = load_vae_dict(vae_file, map_location=shared.weight_load_location)
  114. _load_vae_dict(model, vae_dict_1)
  115. if cache_enabled:
  116. # cache newly loaded vae
  117. checkpoints_loaded[vae_file] = vae_dict_1.copy()
  118. # clean up cache if limit is reached
  119. if cache_enabled:
  120. while len(checkpoints_loaded) > shared.opts.sd_vae_checkpoint_cache + 1: # we need to count the current model
  121. checkpoints_loaded.popitem(last=False) # LRU
  122. # If vae used is not in dict, update it
  123. # It will be removed on refresh though
  124. vae_opt = get_filename(vae_file)
  125. if vae_opt not in vae_dict:
  126. vae_dict[vae_opt] = vae_file
  127. elif loaded_vae_file:
  128. restore_base_vae(model)
  129. loaded_vae_file = vae_file
  130. # don't call this from outside
  131. def _load_vae_dict(model, vae_dict_1):
  132. model.first_stage_model.load_state_dict(vae_dict_1)
  133. model.first_stage_model.to(devices.dtype_vae)
  134. def clear_loaded_vae():
  135. global loaded_vae_file
  136. loaded_vae_file = None
  137. unspecified = object()
  138. def reload_vae_weights(sd_model=None, vae_file=unspecified):
  139. from modules import lowvram, devices, sd_hijack
  140. if not sd_model:
  141. sd_model = shared.sd_model
  142. checkpoint_info = sd_model.sd_checkpoint_info
  143. checkpoint_file = checkpoint_info.filename
  144. if vae_file == unspecified:
  145. vae_file, vae_source = resolve_vae(checkpoint_file)
  146. else:
  147. vae_source = "from function argument"
  148. if loaded_vae_file == vae_file:
  149. return
  150. if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
  151. lowvram.send_everything_to_cpu()
  152. else:
  153. sd_model.to(devices.cpu)
  154. sd_hijack.model_hijack.undo_hijack(sd_model)
  155. load_vae(sd_model, vae_file, vae_source)
  156. sd_hijack.model_hijack.hijack(sd_model)
  157. script_callbacks.model_loaded_callback(sd_model)
  158. if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
  159. sd_model.to(devices.device)
  160. print("VAE weights loaded.")
  161. return sd_model