sd_samplers_kdiffusion.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479
  1. from collections import deque
  2. import torch
  3. import inspect
  4. import k_diffusion.sampling
  5. from modules import prompt_parser, devices, sd_samplers_common, sd_samplers_extra
  6. from modules.shared import opts, state
  7. import modules.shared as shared
  8. from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
  9. from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
  10. from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback
  11. samplers_k_diffusion = [
  12. ('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {"uses_ensd": True}),
  13. ('Euler', 'sample_euler', ['k_euler'], {}),
  14. ('LMS', 'sample_lms', ['k_lms'], {}),
  15. ('Heun', 'sample_heun', ['k_heun'], {"second_order": True}),
  16. ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}),
  17. ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True, "uses_ensd": True}),
  18. ('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {"uses_ensd": True, "second_order": True}),
  19. ('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
  20. ('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {"second_order": True, "brownian_noise": True}),
  21. ('DPM++ 2M SDE', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {"brownian_noise": True}),
  22. ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {"uses_ensd": True}),
  23. ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {"uses_ensd": True}),
  24. ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
  25. ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
  26. ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
  27. ('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras', "uses_ensd": True, "second_order": True}),
  28. ('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
  29. ('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}),
  30. ('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {'scheduler': 'karras', "brownian_noise": True}),
  31. ('DPM++ 2M SDE Exponential', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_exp'], {'scheduler': 'exponential', "brownian_noise": True}),
  32. ('Restart', sd_samplers_extra.restart_sampler, ['restart'], {'scheduler': 'karras'}),
  33. ]
  34. samplers_data_k_diffusion = [
  35. sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
  36. for label, funcname, aliases, options in samplers_k_diffusion
  37. if callable(funcname) or hasattr(k_diffusion.sampling, funcname)
  38. ]
  39. sampler_extra_params = {
  40. 'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
  41. 'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
  42. 'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
  43. }
  44. k_diffusion_samplers_map = {x.name: x for x in samplers_data_k_diffusion}
  45. k_diffusion_scheduler = {
  46. 'Automatic': None,
  47. 'karras': k_diffusion.sampling.get_sigmas_karras,
  48. 'exponential': k_diffusion.sampling.get_sigmas_exponential,
  49. 'polyexponential': k_diffusion.sampling.get_sigmas_polyexponential
  50. }
  51. def catenate_conds(conds):
  52. if not isinstance(conds[0], dict):
  53. return torch.cat(conds)
  54. return {key: torch.cat([x[key] for x in conds]) for key in conds[0].keys()}
  55. def subscript_cond(cond, a, b):
  56. if not isinstance(cond, dict):
  57. return cond[a:b]
  58. return {key: vec[a:b] for key, vec in cond.items()}
  59. def pad_cond(tensor, repeats, empty):
  60. if not isinstance(tensor, dict):
  61. return torch.cat([tensor, empty.repeat((tensor.shape[0], repeats, 1))], axis=1)
  62. tensor['crossattn'] = pad_cond(tensor['crossattn'], repeats, empty)
  63. return tensor
  64. class CFGDenoiser(torch.nn.Module):
  65. """
  66. Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet)
  67. that can take a noisy picture and produce a noise-free picture using two guidances (prompts)
  68. instead of one. Originally, the second prompt is just an empty string, but we use non-empty
  69. negative prompt.
  70. """
  71. def __init__(self, model):
  72. super().__init__()
  73. self.inner_model = model
  74. self.mask = None
  75. self.nmask = None
  76. self.init_latent = None
  77. self.step = 0
  78. self.image_cfg_scale = None
  79. self.padded_cond_uncond = False
  80. def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
  81. denoised_uncond = x_out[-uncond.shape[0]:]
  82. denoised = torch.clone(denoised_uncond)
  83. for i, conds in enumerate(conds_list):
  84. for cond_index, weight in conds:
  85. denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
  86. return denoised
  87. def combine_denoised_for_edit_model(self, x_out, cond_scale):
  88. out_cond, out_img_cond, out_uncond = x_out.chunk(3)
  89. denoised = out_uncond + cond_scale * (out_cond - out_img_cond) + self.image_cfg_scale * (out_img_cond - out_uncond)
  90. return denoised
  91. def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
  92. if state.interrupted or state.skipped:
  93. raise sd_samplers_common.InterruptedException
  94. # at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling,
  95. # so is_edit_model is set to False to support AND composition.
  96. is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0
  97. conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
  98. uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
  99. assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"
  100. batch_size = len(conds_list)
  101. repeats = [len(conds_list[i]) for i in range(batch_size)]
  102. if shared.sd_model.model.conditioning_key == "crossattn-adm":
  103. image_uncond = torch.zeros_like(image_cond)
  104. make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": [c_crossattn], "c_adm": c_adm}
  105. else:
  106. image_uncond = image_cond
  107. if isinstance(uncond, dict):
  108. make_condition_dict = lambda c_crossattn, c_concat: {**c_crossattn, "c_concat": [c_concat]}
  109. else:
  110. make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": [c_crossattn], "c_concat": [c_concat]}
  111. if not is_edit_model:
  112. x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
  113. sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
  114. image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond])
  115. else:
  116. x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x])
  117. sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma])
  118. image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)])
  119. denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps, tensor, uncond)
  120. cfg_denoiser_callback(denoiser_params)
  121. x_in = denoiser_params.x
  122. image_cond_in = denoiser_params.image_cond
  123. sigma_in = denoiser_params.sigma
  124. tensor = denoiser_params.text_cond
  125. uncond = denoiser_params.text_uncond
  126. skip_uncond = False
  127. # alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
  128. if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
  129. skip_uncond = True
  130. x_in = x_in[:-batch_size]
  131. sigma_in = sigma_in[:-batch_size]
  132. self.padded_cond_uncond = False
  133. if shared.opts.pad_cond_uncond and tensor.shape[1] != uncond.shape[1]:
  134. empty = shared.sd_model.cond_stage_model_empty_prompt
  135. num_repeats = (tensor.shape[1] - uncond.shape[1]) // empty.shape[1]
  136. if num_repeats < 0:
  137. tensor = pad_cond(tensor, -num_repeats, empty)
  138. self.padded_cond_uncond = True
  139. elif num_repeats > 0:
  140. uncond = pad_cond(uncond, num_repeats, empty)
  141. self.padded_cond_uncond = True
  142. if tensor.shape[1] == uncond.shape[1] or skip_uncond:
  143. if is_edit_model:
  144. cond_in = catenate_conds([tensor, uncond, uncond])
  145. elif skip_uncond:
  146. cond_in = tensor
  147. else:
  148. cond_in = catenate_conds([tensor, uncond])
  149. if shared.batch_cond_uncond:
  150. x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict(cond_in, image_cond_in))
  151. else:
  152. x_out = torch.zeros_like(x_in)
  153. for batch_offset in range(0, x_out.shape[0], batch_size):
  154. a = batch_offset
  155. b = a + batch_size
  156. x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(subscript_cond(cond_in, a, b), image_cond_in[a:b]))
  157. else:
  158. x_out = torch.zeros_like(x_in)
  159. batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
  160. for batch_offset in range(0, tensor.shape[0], batch_size):
  161. a = batch_offset
  162. b = min(a + batch_size, tensor.shape[0])
  163. if not is_edit_model:
  164. c_crossattn = subscript_cond(tensor, a, b)
  165. else:
  166. c_crossattn = torch.cat([tensor[a:b]], uncond)
  167. x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))
  168. if not skip_uncond:
  169. x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict(uncond, image_cond_in[-uncond.shape[0]:]))
  170. denoised_image_indexes = [x[0][0] for x in conds_list]
  171. if skip_uncond:
  172. fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes])
  173. x_out = torch.cat([x_out, fake_uncond]) # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be
  174. denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps, self.inner_model)
  175. cfg_denoised_callback(denoised_params)
  176. devices.test_for_nans(x_out, "unet")
  177. if opts.live_preview_content == "Prompt":
  178. sd_samplers_common.store_latent(torch.cat([x_out[i:i+1] for i in denoised_image_indexes]))
  179. elif opts.live_preview_content == "Negative prompt":
  180. sd_samplers_common.store_latent(x_out[-uncond.shape[0]:])
  181. if is_edit_model:
  182. denoised = self.combine_denoised_for_edit_model(x_out, cond_scale)
  183. elif skip_uncond:
  184. denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0)
  185. else:
  186. denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
  187. if self.mask is not None:
  188. denoised = self.init_latent * self.mask + self.nmask * denoised
  189. after_cfg_callback_params = AfterCFGCallbackParams(denoised, state.sampling_step, state.sampling_steps)
  190. cfg_after_cfg_callback(after_cfg_callback_params)
  191. denoised = after_cfg_callback_params.x
  192. self.step += 1
  193. return denoised
  194. class TorchHijack:
  195. def __init__(self, sampler_noises):
  196. # Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
  197. # implementation.
  198. self.sampler_noises = deque(sampler_noises)
  199. def __getattr__(self, item):
  200. if item == 'randn_like':
  201. return self.randn_like
  202. if hasattr(torch, item):
  203. return getattr(torch, item)
  204. raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
  205. def randn_like(self, x):
  206. if self.sampler_noises:
  207. noise = self.sampler_noises.popleft()
  208. if noise.shape == x.shape:
  209. return noise
  210. return devices.randn_like(x)
  211. class KDiffusionSampler:
  212. def __init__(self, funcname, sd_model):
  213. denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
  214. self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
  215. self.funcname = funcname
  216. self.func = funcname if callable(funcname) else getattr(k_diffusion.sampling, self.funcname)
  217. self.extra_params = sampler_extra_params.get(funcname, [])
  218. self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
  219. self.sampler_noises = None
  220. self.stop_at = None
  221. self.eta = None
  222. self.config = None # set by the function calling the constructor
  223. self.last_latent = None
  224. self.s_min_uncond = None
  225. self.conditioning_key = sd_model.model.conditioning_key
  226. def callback_state(self, d):
  227. step = d['i']
  228. latent = d["denoised"]
  229. if opts.live_preview_content == "Combined":
  230. sd_samplers_common.store_latent(latent)
  231. self.last_latent = latent
  232. if self.stop_at is not None and step > self.stop_at:
  233. raise sd_samplers_common.InterruptedException
  234. state.sampling_step = step
  235. shared.total_tqdm.update()
  236. def launch_sampling(self, steps, func):
  237. state.sampling_steps = steps
  238. state.sampling_step = 0
  239. try:
  240. return func()
  241. except RecursionError:
  242. print(
  243. 'Encountered RecursionError during sampling, returning last latent. '
  244. 'rho >5 with a polyexponential scheduler may cause this error. '
  245. 'You should try to use a smaller rho value instead.'
  246. )
  247. return self.last_latent
  248. except sd_samplers_common.InterruptedException:
  249. return self.last_latent
  250. def number_of_needed_noises(self, p):
  251. return p.steps
  252. def initialize(self, p):
  253. self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
  254. self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
  255. self.model_wrap_cfg.step = 0
  256. self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
  257. self.eta = p.eta if p.eta is not None else opts.eta_ancestral
  258. self.s_min_uncond = getattr(p, 's_min_uncond', 0.0)
  259. k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
  260. extra_params_kwargs = {}
  261. for param_name in self.extra_params:
  262. if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
  263. extra_params_kwargs[param_name] = getattr(p, param_name)
  264. if 'eta' in inspect.signature(self.func).parameters:
  265. if self.eta != 1.0:
  266. p.extra_generation_params["Eta"] = self.eta
  267. extra_params_kwargs['eta'] = self.eta
  268. return extra_params_kwargs
  269. def get_sigmas(self, p, steps):
  270. discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
  271. if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma:
  272. discard_next_to_last_sigma = True
  273. p.extra_generation_params["Discard penultimate sigma"] = True
  274. steps += 1 if discard_next_to_last_sigma else 0
  275. if p.sampler_noise_scheduler_override:
  276. sigmas = p.sampler_noise_scheduler_override(steps)
  277. elif opts.k_sched_type != "Automatic":
  278. m_sigma_min, m_sigma_max = (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
  279. sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (m_sigma_min, m_sigma_max)
  280. sigmas_kwargs = {
  281. 'sigma_min': sigma_min,
  282. 'sigma_max': sigma_max,
  283. }
  284. sigmas_func = k_diffusion_scheduler[opts.k_sched_type]
  285. p.extra_generation_params["Schedule type"] = opts.k_sched_type
  286. if opts.sigma_min != m_sigma_min and opts.sigma_min != 0:
  287. sigmas_kwargs['sigma_min'] = opts.sigma_min
  288. p.extra_generation_params["Schedule min sigma"] = opts.sigma_min
  289. if opts.sigma_max != m_sigma_max and opts.sigma_max != 0:
  290. sigmas_kwargs['sigma_max'] = opts.sigma_max
  291. p.extra_generation_params["Schedule max sigma"] = opts.sigma_max
  292. default_rho = 1. if opts.k_sched_type == "polyexponential" else 7.
  293. if opts.k_sched_type != 'exponential' and opts.rho != 0 and opts.rho != default_rho:
  294. sigmas_kwargs['rho'] = opts.rho
  295. p.extra_generation_params["Schedule rho"] = opts.rho
  296. sigmas = sigmas_func(n=steps, **sigmas_kwargs, device=shared.device)
  297. elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
  298. sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
  299. sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device)
  300. elif self.config is not None and self.config.options.get('scheduler', None) == 'exponential':
  301. m_sigma_min, m_sigma_max = (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
  302. sigmas = k_diffusion.sampling.get_sigmas_exponential(n=steps, sigma_min=m_sigma_min, sigma_max=m_sigma_max, device=shared.device)
  303. else:
  304. sigmas = self.model_wrap.get_sigmas(steps)
  305. if discard_next_to_last_sigma:
  306. sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
  307. return sigmas
  308. def create_noise_sampler(self, x, sigmas, p):
  309. """For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""
  310. if shared.opts.no_dpmpp_sde_batch_determinism:
  311. return None
  312. from k_diffusion.sampling import BrownianTreeNoiseSampler
  313. sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
  314. current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
  315. return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds)
  316. def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
  317. steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
  318. sigmas = self.get_sigmas(p, steps)
  319. sigma_sched = sigmas[steps - t_enc - 1:]
  320. xi = x + noise * sigma_sched[0]
  321. extra_params_kwargs = self.initialize(p)
  322. parameters = inspect.signature(self.func).parameters
  323. if 'sigma_min' in parameters:
  324. ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
  325. extra_params_kwargs['sigma_min'] = sigma_sched[-2]
  326. if 'sigma_max' in parameters:
  327. extra_params_kwargs['sigma_max'] = sigma_sched[0]
  328. if 'n' in parameters:
  329. extra_params_kwargs['n'] = len(sigma_sched) - 1
  330. if 'sigma_sched' in parameters:
  331. extra_params_kwargs['sigma_sched'] = sigma_sched
  332. if 'sigmas' in parameters:
  333. extra_params_kwargs['sigmas'] = sigma_sched
  334. if self.config.options.get('brownian_noise', False):
  335. noise_sampler = self.create_noise_sampler(x, sigmas, p)
  336. extra_params_kwargs['noise_sampler'] = noise_sampler
  337. self.model_wrap_cfg.init_latent = x
  338. self.last_latent = x
  339. extra_args = {
  340. 'cond': conditioning,
  341. 'image_cond': image_conditioning,
  342. 'uncond': unconditional_conditioning,
  343. 'cond_scale': p.cfg_scale,
  344. 's_min_uncond': self.s_min_uncond
  345. }
  346. samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
  347. if self.model_wrap_cfg.padded_cond_uncond:
  348. p.extra_generation_params["Pad conds"] = True
  349. return samples
  350. def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
  351. steps = steps or p.steps
  352. sigmas = self.get_sigmas(p, steps)
  353. x = x * sigmas[0]
  354. extra_params_kwargs = self.initialize(p)
  355. parameters = inspect.signature(self.func).parameters
  356. if 'sigma_min' in parameters:
  357. extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
  358. extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
  359. if 'n' in parameters:
  360. extra_params_kwargs['n'] = steps
  361. else:
  362. extra_params_kwargs['sigmas'] = sigmas
  363. if self.config.options.get('brownian_noise', False):
  364. noise_sampler = self.create_noise_sampler(x, sigmas, p)
  365. extra_params_kwargs['noise_sampler'] = noise_sampler
  366. self.last_latent = x
  367. samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
  368. 'cond': conditioning,
  369. 'image_cond': image_conditioning,
  370. 'uncond': unconditional_conditioning,
  371. 'cond_scale': p.cfg_scale,
  372. 's_min_uncond': self.s_min_uncond
  373. }, disable=False, callback=self.callback_state, **extra_params_kwargs))
  374. if self.model_wrap_cfg.padded_cond_uncond:
  375. p.extra_generation_params["Pad conds"] = True
  376. return samples