123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209 |
- import re
- from collections import namedtuple
- import torch
- from lark import Lark, Transformer, Visitor
- import functools
- import modules.shared as shared
- # a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
- # will be represented with prompt_schedule like this (assuming steps=100):
- # [25, 'fantasy landscape with a mountain and an oak in foreground shoddy']
- # [50, 'fantasy landscape with a lake and an oak in foreground in background shoddy']
- # [60, 'fantasy landscape with a lake and an oak in foreground in background masterful']
- # [75, 'fantasy landscape with a lake and an oak in background masterful']
- # [100, 'fantasy landscape with a lake and a christmas tree in background masterful']
- def get_learned_conditioning_prompt_schedules(prompts, steps):
- grammar = r"""
- start: prompt
- prompt: (emphasized | scheduled | weighted | plain)*
- !emphasized: "(" prompt ")"
- | "(" prompt ":" prompt ")"
- | "[" prompt "]"
- scheduled: "[" (prompt ":")? prompt ":" NUMBER "]"
- !weighted: "{" weighted_item ("|" weighted_item)* "}"
- !weighted_item: prompt (":" prompt)?
- plain: /([^\\\[\](){}:|]|\\.)+/
- %import common.SIGNED_NUMBER -> NUMBER
- """
- parser = Lark(grammar, parser='lalr')
- def collect_steps(steps, tree):
- l = [steps]
- class CollectSteps(Visitor):
- def scheduled(self, tree):
- tree.children[-1] = float(tree.children[-1])
- if tree.children[-1] < 1:
- tree.children[-1] *= steps
- tree.children[-1] = min(steps, int(tree.children[-1]))
- l.append(tree.children[-1])
- CollectSteps().visit(tree)
- return sorted(set(l))
- def at_step(step, tree):
- class AtStep(Transformer):
- def scheduled(self, args):
- if len(args) == 2:
- before, after, when = (), *args
- else:
- before, after, when = args
- yield before if step <= when else after
- def start(self, args):
- def flatten(x):
- if type(x) == str:
- yield x
- else:
- for gen in x:
- yield from flatten(gen)
- return ''.join(flatten(args[0]))
- def plain(self, args):
- yield args[0].value
- def __default__(self, data, children, meta):
- for child in children:
- yield from child
- return AtStep().transform(tree)
-
- def get_schedule(prompt):
- tree = parser.parse(prompt)
- return [[t, at_step(t, tree)] for t in collect_steps(steps, tree)]
- promptdict = {prompt: get_schedule(prompt) for prompt in set(prompts)}
- return [promptdict[prompt] for prompt in prompts]
- ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"])
- ScheduledPromptBatch = namedtuple("ScheduledPromptBatch", ["shape", "schedules"])
- def get_learned_conditioning(prompts, steps):
- res = []
- prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps)
- cache = {}
- for prompt, prompt_schedule in zip(prompts, prompt_schedules):
- cached = cache.get(prompt, None)
- if cached is not None:
- res.append(cached)
- continue
- texts = [x[1] for x in prompt_schedule]
- conds = shared.sd_model.get_learned_conditioning(texts)
- cond_schedule = []
- for i, (end_at_step, text) in enumerate(prompt_schedule):
- cond_schedule.append(ScheduledPromptConditioning(end_at_step, conds[i]))
- cache[prompt] = cond_schedule
- res.append(cond_schedule)
- return ScheduledPromptBatch((len(prompts),) + res[0][0].cond.shape, res)
- def reconstruct_cond_batch(c: ScheduledPromptBatch, current_step):
- res = torch.zeros(c.shape, device=shared.device, dtype=next(shared.sd_model.parameters()).dtype)
- for i, cond_schedule in enumerate(c.schedules):
- target_index = 0
- for curret_index, (end_at, cond) in enumerate(cond_schedule):
- if current_step <= end_at:
- target_index = curret_index
- break
- res[i] = cond_schedule[target_index].cond
- return res
- re_attention = re.compile(r"""
- \\\(|
- \\\)|
- \\\[|
- \\]|
- \\\\|
- \\|
- \(|
- \[|
- :([+-]?[.\d]+)\)|
- \)|
- ]|
- [^\\()\[\]:]+|
- :
- """, re.X)
- def parse_prompt_attention(text):
- """
- Parses a string with attention tokens and returns a list of pairs: text and its assoicated weight.
- Accepted tokens are:
- (abc) - increases attention to abc by a multiplier of 1.1
- (abc:3.12) - increases attention to abc by a multiplier of 3.12
- [abc] - decreases attention to abc by a multiplier of 1.1
- \( - literal character '('
- \[ - literal character '['
- \) - literal character ')'
- \] - literal character ']'
- \\ - literal character '\'
- anything else - just text
- Example:
- 'a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).'
- produces:
- [
- ['a ', 1.0],
- ['house', 1.5730000000000004],
- [' ', 1.1],
- ['on', 1.0],
- [' a ', 1.1],
- ['hill', 0.55],
- [', sun, ', 1.1],
- ['sky', 1.4641000000000006],
- ['.', 1.1]
- ]
- """
- res = []
- round_brackets = []
- square_brackets = []
- round_bracket_multiplier = 1.1
- square_bracket_multiplier = 1 / 1.1
- def multiply_range(start_position, multiplier):
- for p in range(start_position, len(res)):
- res[p][1] *= multiplier
- for m in re_attention.finditer(text):
- text = m.group(0)
- weight = m.group(1)
- if text.startswith('\\'):
- res.append([text[1:], 1.0])
- elif text == '(':
- round_brackets.append(len(res))
- elif text == '[':
- square_brackets.append(len(res))
- elif weight is not None and len(round_brackets) > 0:
- multiply_range(round_brackets.pop(), float(weight))
- elif text == ')' and len(round_brackets) > 0:
- multiply_range(round_brackets.pop(), round_bracket_multiplier)
- elif text == ']' and len(square_brackets) > 0:
- multiply_range(square_brackets.pop(), square_bracket_multiplier)
- else:
- res.append([text, 1.0])
- for pos in round_brackets:
- multiply_range(pos, round_bracket_multiplier)
- for pos in square_brackets:
- multiply_range(pos, square_bracket_multiplier)
- if len(res) == 0:
- res = [["", 1.0]]
- return res
|