processing.py 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321
  1. import json
  2. import logging
  3. import math
  4. import os
  5. import sys
  6. import hashlib
  7. import torch
  8. import numpy as np
  9. from PIL import Image, ImageFilter, ImageOps
  10. import random
  11. import cv2
  12. from skimage import exposure
  13. from typing import Any, Dict, List
  14. import modules.sd_hijack
  15. from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet
  16. from modules.sd_hijack import model_hijack
  17. from modules.shared import opts, cmd_opts, state
  18. import modules.shared as shared
  19. import modules.paths as paths
  20. import modules.face_restoration
  21. import modules.images as images
  22. import modules.styles
  23. import modules.sd_models as sd_models
  24. import modules.sd_vae as sd_vae
  25. from ldm.data.util import AddMiDaS
  26. from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
  27. from einops import repeat, rearrange
  28. from blendmodes.blend import blendLayers, BlendType
  29. # some of those options should not be changed at all because they would break the model, so I removed them from options.
  30. opt_C = 4
  31. opt_f = 8
  32. def setup_color_correction(image):
  33. logging.info("Calibrating color correction.")
  34. correction_target = cv2.cvtColor(np.asarray(image.copy()), cv2.COLOR_RGB2LAB)
  35. return correction_target
  36. def apply_color_correction(correction, original_image):
  37. logging.info("Applying color correction.")
  38. image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
  39. cv2.cvtColor(
  40. np.asarray(original_image),
  41. cv2.COLOR_RGB2LAB
  42. ),
  43. correction,
  44. channel_axis=2
  45. ), cv2.COLOR_LAB2RGB).astype("uint8"))
  46. image = blendLayers(image, original_image, BlendType.LUMINOSITY)
  47. return image
  48. def apply_overlay(image, paste_loc, index, overlays):
  49. if overlays is None or index >= len(overlays):
  50. return image
  51. overlay = overlays[index]
  52. if paste_loc is not None:
  53. x, y, w, h = paste_loc
  54. base_image = Image.new('RGBA', (overlay.width, overlay.height))
  55. image = images.resize_image(1, image, w, h)
  56. base_image.paste(image, (x, y))
  57. image = base_image
  58. image = image.convert('RGBA')
  59. image.alpha_composite(overlay)
  60. image = image.convert('RGB')
  61. return image
  62. def txt2img_image_conditioning(sd_model, x, width, height):
  63. if sd_model.model.conditioning_key in {'hybrid', 'concat'}: # Inpainting models
  64. # The "masked-image" in this case will just be all zeros since the entire image is masked.
  65. image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
  66. image_conditioning = sd_model.get_first_stage_encoding(sd_model.encode_first_stage(image_conditioning))
  67. # Add the fake full 1s mask to the first dimension.
  68. image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
  69. image_conditioning = image_conditioning.to(x.dtype)
  70. return image_conditioning
  71. elif sd_model.model.conditioning_key == "crossattn-adm": # UnCLIP models
  72. return x.new_zeros(x.shape[0], 2*sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device)
  73. else:
  74. # Dummy zero conditioning if we're not using inpainting or unclip models.
  75. # Still takes up a bit of memory, but no encoder call.
  76. # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
  77. return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
  78. class StableDiffusionProcessing:
  79. """
  80. The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
  81. """
  82. def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
  83. if sampler_index is not None:
  84. print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
  85. self.outpath_samples: str = outpath_samples
  86. self.outpath_grids: str = outpath_grids
  87. self.prompt: str = prompt
  88. self.prompt_for_display: str = None
  89. self.negative_prompt: str = (negative_prompt or "")
  90. self.styles: list = styles or []
  91. self.seed: int = seed
  92. self.subseed: int = subseed
  93. self.subseed_strength: float = subseed_strength
  94. self.seed_resize_from_h: int = seed_resize_from_h
  95. self.seed_resize_from_w: int = seed_resize_from_w
  96. self.sampler_name: str = sampler_name
  97. self.batch_size: int = batch_size
  98. self.n_iter: int = n_iter
  99. self.steps: int = steps
  100. self.cfg_scale: float = cfg_scale
  101. self.width: int = width
  102. self.height: int = height
  103. self.restore_faces: bool = restore_faces
  104. self.tiling: bool = tiling
  105. self.do_not_save_samples: bool = do_not_save_samples
  106. self.do_not_save_grid: bool = do_not_save_grid
  107. self.extra_generation_params: dict = extra_generation_params or {}
  108. self.overlay_images = overlay_images
  109. self.eta = eta
  110. self.do_not_reload_embeddings = do_not_reload_embeddings
  111. self.paste_to = None
  112. self.color_corrections = None
  113. self.denoising_strength: float = denoising_strength
  114. self.sampler_noise_scheduler_override = None
  115. self.ddim_discretize = ddim_discretize or opts.ddim_discretize
  116. self.s_min_uncond = s_min_uncond or opts.s_min_uncond
  117. self.s_churn = s_churn or opts.s_churn
  118. self.s_tmin = s_tmin or opts.s_tmin
  119. self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
  120. self.s_noise = s_noise or opts.s_noise
  121. self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
  122. self.override_settings_restore_afterwards = override_settings_restore_afterwards
  123. self.is_using_inpainting_conditioning = False
  124. self.disable_extra_networks = False
  125. self.token_merging_ratio = 0
  126. self.token_merging_ratio_hr = 0
  127. if not seed_enable_extras:
  128. self.subseed = -1
  129. self.subseed_strength = 0
  130. self.seed_resize_from_h = 0
  131. self.seed_resize_from_w = 0
  132. self.scripts = None
  133. self.script_args = script_args
  134. self.all_prompts = None
  135. self.all_negative_prompts = None
  136. self.all_seeds = None
  137. self.all_subseeds = None
  138. self.iteration = 0
  139. self.is_hr_pass = False
  140. self.sampler = None
  141. self.prompts = None
  142. self.negative_prompts = None
  143. self.extra_network_data = None
  144. self.seeds = None
  145. self.subseeds = None
  146. self.step_multiplier = 1
  147. self.cached_uc = [None, None]
  148. self.cached_c = [None, None]
  149. self.uc = None
  150. self.c = None
  151. @property
  152. def sd_model(self):
  153. return shared.sd_model
  154. def txt2img_image_conditioning(self, x, width=None, height=None):
  155. self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'}
  156. return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height)
  157. def depth2img_image_conditioning(self, source_image):
  158. # Use the AddMiDaS helper to Format our source image to suit the MiDaS model
  159. transformer = AddMiDaS(model_type="dpt_hybrid")
  160. transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")})
  161. midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device)
  162. midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size)
  163. conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image))
  164. conditioning = torch.nn.functional.interpolate(
  165. self.sd_model.depth_model(midas_in),
  166. size=conditioning_image.shape[2:],
  167. mode="bicubic",
  168. align_corners=False,
  169. )
  170. (depth_min, depth_max) = torch.aminmax(conditioning)
  171. conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1.
  172. return conditioning
  173. def edit_image_conditioning(self, source_image):
  174. conditioning_image = self.sd_model.encode_first_stage(source_image).mode()
  175. return conditioning_image
  176. def unclip_image_conditioning(self, source_image):
  177. c_adm = self.sd_model.embedder(source_image)
  178. if self.sd_model.noise_augmentor is not None:
  179. noise_level = 0 # TODO: Allow other noise levels?
  180. c_adm, noise_level_emb = self.sd_model.noise_augmentor(c_adm, noise_level=repeat(torch.tensor([noise_level]).to(c_adm.device), '1 -> b', b=c_adm.shape[0]))
  181. c_adm = torch.cat((c_adm, noise_level_emb), 1)
  182. return c_adm
  183. def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None):
  184. self.is_using_inpainting_conditioning = True
  185. # Handle the different mask inputs
  186. if image_mask is not None:
  187. if torch.is_tensor(image_mask):
  188. conditioning_mask = image_mask
  189. else:
  190. conditioning_mask = np.array(image_mask.convert("L"))
  191. conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
  192. conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
  193. # Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
  194. conditioning_mask = torch.round(conditioning_mask)
  195. else:
  196. conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:])
  197. # Create another latent image, this time with a masked version of the original input.
  198. # Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
  199. conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype)
  200. conditioning_image = torch.lerp(
  201. source_image,
  202. source_image * (1.0 - conditioning_mask),
  203. getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
  204. )
  205. # Encode the new masked image using first stage of network.
  206. conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
  207. # Create the concatenated conditioning tensor to be fed to `c_concat`
  208. conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
  209. conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
  210. image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
  211. image_conditioning = image_conditioning.to(shared.device).type(self.sd_model.dtype)
  212. return image_conditioning
  213. def img2img_image_conditioning(self, source_image, latent_image, image_mask=None):
  214. source_image = devices.cond_cast_float(source_image)
  215. # HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
  216. # identify itself with a field common to all models. The conditioning_key is also hybrid.
  217. if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
  218. return self.depth2img_image_conditioning(source_image)
  219. if self.sd_model.cond_stage_key == "edit":
  220. return self.edit_image_conditioning(source_image)
  221. if self.sampler.conditioning_key in {'hybrid', 'concat'}:
  222. return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
  223. if self.sampler.conditioning_key == "crossattn-adm":
  224. return self.unclip_image_conditioning(source_image)
  225. # Dummy zero conditioning if we're not using inpainting or depth model.
  226. return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
  227. def init(self, all_prompts, all_seeds, all_subseeds):
  228. pass
  229. def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
  230. raise NotImplementedError()
  231. def close(self):
  232. self.sampler = None
  233. self.c = None
  234. self.uc = None
  235. self.cached_c = [None, None]
  236. self.cached_uc = [None, None]
  237. def get_token_merging_ratio(self, for_hr=False):
  238. if for_hr:
  239. return self.token_merging_ratio_hr or opts.token_merging_ratio_hr or self.token_merging_ratio or opts.token_merging_ratio
  240. return self.token_merging_ratio or opts.token_merging_ratio
  241. def setup_prompts(self):
  242. if type(self.prompt) == list:
  243. self.all_prompts = self.prompt
  244. else:
  245. self.all_prompts = self.batch_size * self.n_iter * [self.prompt]
  246. if type(self.negative_prompt) == list:
  247. self.all_negative_prompts = self.negative_prompt
  248. else:
  249. self.all_negative_prompts = self.batch_size * self.n_iter * [self.negative_prompt]
  250. self.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_prompts]
  251. self.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_negative_prompts]
  252. def get_conds_with_caching(self, function, required_prompts, steps, caches, extra_network_data):
  253. """
  254. Returns the result of calling function(shared.sd_model, required_prompts, steps)
  255. using a cache to store the result if the same arguments have been used before.
  256. cache is an array containing two elements. The first element is a tuple
  257. representing the previously used arguments, or None if no arguments
  258. have been used before. The second element is where the previously
  259. computed result is stored.
  260. caches is a list with items described above.
  261. """
  262. for cache in caches:
  263. if cache[0] is not None and (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info, extra_network_data) == cache[0]:
  264. return cache[1]
  265. cache = caches[0]
  266. with devices.autocast():
  267. cache[1] = function(shared.sd_model, required_prompts, steps)
  268. cache[0] = (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info, extra_network_data)
  269. return cache[1]
  270. def setup_conds(self):
  271. sampler_config = sd_samplers.find_sampler_config(self.sampler_name)
  272. self.step_multiplier = 2 if sampler_config and sampler_config.options.get("second_order", False) else 1
  273. self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.negative_prompts, self.steps * self.step_multiplier, [self.cached_uc], self.extra_network_data)
  274. self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.prompts, self.steps * self.step_multiplier, [self.cached_c], self.extra_network_data)
  275. def parse_extra_network_prompts(self):
  276. self.prompts, self.extra_network_data = extra_networks.parse_prompts(self.prompts)
  277. class Processed:
  278. def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
  279. self.images = images_list
  280. self.prompt = p.prompt
  281. self.negative_prompt = p.negative_prompt
  282. self.seed = seed
  283. self.subseed = subseed
  284. self.subseed_strength = p.subseed_strength
  285. self.info = info
  286. self.comments = comments
  287. self.width = p.width
  288. self.height = p.height
  289. self.sampler_name = p.sampler_name
  290. self.cfg_scale = p.cfg_scale
  291. self.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
  292. self.steps = p.steps
  293. self.batch_size = p.batch_size
  294. self.restore_faces = p.restore_faces
  295. self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None
  296. self.sd_model_hash = shared.sd_model.sd_model_hash
  297. self.seed_resize_from_w = p.seed_resize_from_w
  298. self.seed_resize_from_h = p.seed_resize_from_h
  299. self.denoising_strength = getattr(p, 'denoising_strength', None)
  300. self.extra_generation_params = p.extra_generation_params
  301. self.index_of_first_image = index_of_first_image
  302. self.styles = p.styles
  303. self.job_timestamp = state.job_timestamp
  304. self.clip_skip = opts.CLIP_stop_at_last_layers
  305. self.token_merging_ratio = p.token_merging_ratio
  306. self.token_merging_ratio_hr = p.token_merging_ratio_hr
  307. self.eta = p.eta
  308. self.ddim_discretize = p.ddim_discretize
  309. self.s_churn = p.s_churn
  310. self.s_tmin = p.s_tmin
  311. self.s_tmax = p.s_tmax
  312. self.s_noise = p.s_noise
  313. self.s_min_uncond = p.s_min_uncond
  314. self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
  315. self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0]
  316. self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
  317. self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
  318. self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
  319. self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning
  320. self.all_prompts = all_prompts or p.all_prompts or [self.prompt]
  321. self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
  322. self.all_seeds = all_seeds or p.all_seeds or [self.seed]
  323. self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
  324. self.infotexts = infotexts or [info]
  325. def js(self):
  326. obj = {
  327. "prompt": self.all_prompts[0],
  328. "all_prompts": self.all_prompts,
  329. "negative_prompt": self.all_negative_prompts[0],
  330. "all_negative_prompts": self.all_negative_prompts,
  331. "seed": self.seed,
  332. "all_seeds": self.all_seeds,
  333. "subseed": self.subseed,
  334. "all_subseeds": self.all_subseeds,
  335. "subseed_strength": self.subseed_strength,
  336. "width": self.width,
  337. "height": self.height,
  338. "sampler_name": self.sampler_name,
  339. "cfg_scale": self.cfg_scale,
  340. "steps": self.steps,
  341. "batch_size": self.batch_size,
  342. "restore_faces": self.restore_faces,
  343. "face_restoration_model": self.face_restoration_model,
  344. "sd_model_hash": self.sd_model_hash,
  345. "seed_resize_from_w": self.seed_resize_from_w,
  346. "seed_resize_from_h": self.seed_resize_from_h,
  347. "denoising_strength": self.denoising_strength,
  348. "extra_generation_params": self.extra_generation_params,
  349. "index_of_first_image": self.index_of_first_image,
  350. "infotexts": self.infotexts,
  351. "styles": self.styles,
  352. "job_timestamp": self.job_timestamp,
  353. "clip_skip": self.clip_skip,
  354. "is_using_inpainting_conditioning": self.is_using_inpainting_conditioning,
  355. }
  356. return json.dumps(obj)
  357. def infotext(self, p: StableDiffusionProcessing, index):
  358. return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
  359. def get_token_merging_ratio(self, for_hr=False):
  360. return self.token_merging_ratio_hr if for_hr else self.token_merging_ratio
  361. # from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
  362. def slerp(val, low, high):
  363. low_norm = low/torch.norm(low, dim=1, keepdim=True)
  364. high_norm = high/torch.norm(high, dim=1, keepdim=True)
  365. dot = (low_norm*high_norm).sum(1)
  366. if dot.mean() > 0.9995:
  367. return low * val + high * (1 - val)
  368. omega = torch.acos(dot)
  369. so = torch.sin(omega)
  370. res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
  371. return res
  372. def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
  373. eta_noise_seed_delta = opts.eta_noise_seed_delta or 0
  374. xs = []
  375. # if we have multiple seeds, this means we are working with batch size>1; this then
  376. # enables the generation of additional tensors with noise that the sampler will use during its processing.
  377. # Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
  378. # produce the same images as with two batches [100], [101].
  379. if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or eta_noise_seed_delta > 0):
  380. sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
  381. else:
  382. sampler_noises = None
  383. for i, seed in enumerate(seeds):
  384. noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)
  385. subnoise = None
  386. if subseeds is not None:
  387. subseed = 0 if i >= len(subseeds) else subseeds[i]
  388. subnoise = devices.randn(subseed, noise_shape)
  389. # randn results depend on device; gpu and cpu get different results for same seed;
  390. # the way I see it, it's better to do this on CPU, so that everyone gets same result;
  391. # but the original script had it like this, so I do not dare change it for now because
  392. # it will break everyone's seeds.
  393. noise = devices.randn(seed, noise_shape)
  394. if subnoise is not None:
  395. noise = slerp(subseed_strength, noise, subnoise)
  396. if noise_shape != shape:
  397. x = devices.randn(seed, shape)
  398. dx = (shape[2] - noise_shape[2]) // 2
  399. dy = (shape[1] - noise_shape[1]) // 2
  400. w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx
  401. h = noise_shape[1] if dy >= 0 else noise_shape[1] + 2 * dy
  402. tx = 0 if dx < 0 else dx
  403. ty = 0 if dy < 0 else dy
  404. dx = max(-dx, 0)
  405. dy = max(-dy, 0)
  406. x[:, ty:ty+h, tx:tx+w] = noise[:, dy:dy+h, dx:dx+w]
  407. noise = x
  408. if sampler_noises is not None:
  409. cnt = p.sampler.number_of_needed_noises(p)
  410. if eta_noise_seed_delta > 0:
  411. torch.manual_seed(seed + eta_noise_seed_delta)
  412. for j in range(cnt):
  413. sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
  414. xs.append(noise)
  415. if sampler_noises is not None:
  416. p.sampler.sampler_noises = [torch.stack(n).to(shared.device) for n in sampler_noises]
  417. x = torch.stack(xs).to(shared.device)
  418. return x
  419. def decode_first_stage(model, x):
  420. with devices.autocast(disable=x.dtype == devices.dtype_vae):
  421. x = model.decode_first_stage(x)
  422. return x
  423. def get_fixed_seed(seed):
  424. if seed is None or seed == '' or seed == -1:
  425. return int(random.randrange(4294967294))
  426. return seed
  427. def fix_seed(p):
  428. p.seed = get_fixed_seed(p.seed)
  429. p.subseed = get_fixed_seed(p.subseed)
  430. def program_version():
  431. import launch
  432. res = launch.git_tag()
  433. if res == "<none>":
  434. res = None
  435. return res
  436. def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0):
  437. index = position_in_batch + iteration * p.batch_size
  438. clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
  439. enable_hr = getattr(p, 'enable_hr', False)
  440. token_merging_ratio = p.get_token_merging_ratio()
  441. token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True)
  442. uses_ensd = opts.eta_noise_seed_delta != 0
  443. if uses_ensd:
  444. uses_ensd = sd_samplers_common.is_sampler_using_eta_noise_seed_delta(p)
  445. generation_params = {
  446. "Steps": p.steps,
  447. "Sampler": p.sampler_name,
  448. "CFG scale": p.cfg_scale,
  449. "Image CFG scale": getattr(p, 'image_cfg_scale', None),
  450. "Seed": all_seeds[index],
  451. "Face restoration": (opts.face_restoration_model if p.restore_faces else None),
  452. "Size": f"{p.width}x{p.height}",
  453. "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
  454. "Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
  455. "Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
  456. "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
  457. "Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
  458. "Denoising strength": getattr(p, 'denoising_strength', None),
  459. "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
  460. "Clip skip": None if clip_skip <= 1 else clip_skip,
  461. "ENSD": opts.eta_noise_seed_delta if uses_ensd else None,
  462. "Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio,
  463. "Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
  464. "Init image hash": getattr(p, 'init_img_hash', None),
  465. "RNG": opts.randn_source if opts.randn_source != "GPU" else None,
  466. "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
  467. **p.extra_generation_params,
  468. "Version": program_version() if opts.add_version_to_infotext else None,
  469. }
  470. generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
  471. negative_prompt_text = f"\nNegative prompt: {p.all_negative_prompts[index]}" if p.all_negative_prompts[index] else ""
  472. return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
  473. def process_images(p: StableDiffusionProcessing) -> Processed:
  474. if p.scripts is not None:
  475. p.scripts.before_process(p)
  476. stored_opts = {k: opts.data[k] for k in p.override_settings.keys()}
  477. try:
  478. # if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint
  479. if sd_models.checkpoint_alisases.get(p.override_settings.get('sd_model_checkpoint')) is None:
  480. p.override_settings.pop('sd_model_checkpoint', None)
  481. sd_models.reload_model_weights()
  482. for k, v in p.override_settings.items():
  483. setattr(opts, k, v)
  484. if k == 'sd_model_checkpoint':
  485. sd_models.reload_model_weights()
  486. if k == 'sd_vae':
  487. sd_vae.reload_vae_weights()
  488. sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio())
  489. res = process_images_inner(p)
  490. finally:
  491. sd_models.apply_token_merging(p.sd_model, 0)
  492. # restore opts to original state
  493. if p.override_settings_restore_afterwards:
  494. for k, v in stored_opts.items():
  495. setattr(opts, k, v)
  496. if k == 'sd_vae':
  497. sd_vae.reload_vae_weights()
  498. return res
  499. def process_images_inner(p: StableDiffusionProcessing) -> Processed:
  500. """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
  501. if type(p.prompt) == list:
  502. assert(len(p.prompt) > 0)
  503. else:
  504. assert p.prompt is not None
  505. devices.torch_gc()
  506. seed = get_fixed_seed(p.seed)
  507. subseed = get_fixed_seed(p.subseed)
  508. modules.sd_hijack.model_hijack.apply_circular(p.tiling)
  509. modules.sd_hijack.model_hijack.clear_comments()
  510. comments = {}
  511. p.setup_prompts()
  512. if type(seed) == list:
  513. p.all_seeds = seed
  514. else:
  515. p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
  516. if type(subseed) == list:
  517. p.all_subseeds = subseed
  518. else:
  519. p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
  520. def infotext(iteration=0, position_in_batch=0):
  521. return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)
  522. if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
  523. model_hijack.embedding_db.load_textual_inversion_embeddings()
  524. if p.scripts is not None:
  525. p.scripts.process(p)
  526. infotexts = []
  527. output_images = []
  528. with torch.no_grad(), p.sd_model.ema_scope():
  529. with devices.autocast():
  530. p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
  531. # for OSX, loading the model during sampling changes the generated picture, so it is loaded here
  532. if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN":
  533. sd_vae_approx.model()
  534. sd_unet.apply_unet()
  535. if state.job_count == -1:
  536. state.job_count = p.n_iter
  537. for n in range(p.n_iter):
  538. p.iteration = n
  539. if state.skipped:
  540. state.skipped = False
  541. if state.interrupted:
  542. break
  543. p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
  544. p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
  545. p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
  546. p.subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
  547. if p.scripts is not None:
  548. p.scripts.before_process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
  549. if len(p.prompts) == 0:
  550. break
  551. p.parse_extra_network_prompts()
  552. if not p.disable_extra_networks:
  553. with devices.autocast():
  554. extra_networks.activate(p, p.extra_network_data)
  555. if p.scripts is not None:
  556. p.scripts.process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
  557. # params.txt should be saved after scripts.process_batch, since the
  558. # infotext could be modified by that callback
  559. # Example: a wildcard processed by process_batch sets an extra model
  560. # strength, which is saved as "Model Strength: 1.0" in the infotext
  561. if n == 0:
  562. with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
  563. processed = Processed(p, [], p.seed, "")
  564. file.write(processed.infotext(p, 0))
  565. p.setup_conds()
  566. if len(model_hijack.comments) > 0:
  567. for comment in model_hijack.comments:
  568. comments[comment] = 1
  569. if p.n_iter > 1:
  570. shared.state.job = f"Batch {n+1} out of {p.n_iter}"
  571. with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
  572. samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
  573. x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))]
  574. for x in x_samples_ddim:
  575. devices.test_for_nans(x, "vae")
  576. x_samples_ddim = torch.stack(x_samples_ddim).float()
  577. x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
  578. del samples_ddim
  579. if lowvram.is_enabled(shared.sd_model):
  580. lowvram.send_everything_to_cpu()
  581. devices.torch_gc()
  582. if p.scripts is not None:
  583. p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
  584. for i, x_sample in enumerate(x_samples_ddim):
  585. p.batch_index = i
  586. x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
  587. x_sample = x_sample.astype(np.uint8)
  588. if p.restore_faces:
  589. if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
  590. images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-face-restoration")
  591. devices.torch_gc()
  592. x_sample = modules.face_restoration.restore_faces(x_sample)
  593. devices.torch_gc()
  594. image = Image.fromarray(x_sample)
  595. if p.scripts is not None:
  596. pp = scripts.PostprocessImageArgs(image)
  597. p.scripts.postprocess_image(p, pp)
  598. image = pp.image
  599. if p.color_corrections is not None and i < len(p.color_corrections):
  600. if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
  601. image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
  602. images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
  603. image = apply_color_correction(p.color_corrections[i], image)
  604. image = apply_overlay(image, p.paste_to, i, p.overlay_images)
  605. if opts.samples_save and not p.do_not_save_samples:
  606. images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p)
  607. text = infotext(n, i)
  608. infotexts.append(text)
  609. if opts.enable_pnginfo:
  610. image.info["parameters"] = text
  611. output_images.append(image)
  612. if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay and any([opts.save_mask, opts.save_mask_composite, opts.return_mask, opts.return_mask_composite]):
  613. image_mask = p.mask_for_overlay.convert('RGB')
  614. image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
  615. if opts.save_mask:
  616. images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask")
  617. if opts.save_mask_composite:
  618. images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask-composite")
  619. if opts.return_mask:
  620. output_images.append(image_mask)
  621. if opts.return_mask_composite:
  622. output_images.append(image_mask_composite)
  623. del x_samples_ddim
  624. devices.torch_gc()
  625. state.nextjob()
  626. p.color_corrections = None
  627. index_of_first_image = 0
  628. unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple
  629. if (opts.return_grid or opts.grid_save) and not p.do_not_save_grid and not unwanted_grid_because_of_img_count:
  630. grid = images.image_grid(output_images, p.batch_size)
  631. if opts.return_grid:
  632. text = infotext()
  633. infotexts.insert(0, text)
  634. if opts.enable_pnginfo:
  635. grid.info["parameters"] = text
  636. output_images.insert(0, grid)
  637. index_of_first_image = 1
  638. if opts.grid_save:
  639. images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
  640. if not p.disable_extra_networks and p.extra_network_data:
  641. extra_networks.deactivate(p, p.extra_network_data)
  642. devices.torch_gc()
  643. res = Processed(
  644. p,
  645. images_list=output_images,
  646. seed=p.all_seeds[0],
  647. info=infotext(),
  648. comments="".join(f"{comment}\n" for comment in comments),
  649. subseed=p.all_subseeds[0],
  650. index_of_first_image=index_of_first_image,
  651. infotexts=infotexts,
  652. )
  653. if p.scripts is not None:
  654. p.scripts.postprocess(p, res)
  655. return res
  656. def old_hires_fix_first_pass_dimensions(width, height):
  657. """old algorithm for auto-calculating first pass size"""
  658. desired_pixel_count = 512 * 512
  659. actual_pixel_count = width * height
  660. scale = math.sqrt(desired_pixel_count / actual_pixel_count)
  661. width = math.ceil(scale * width / 64) * 64
  662. height = math.ceil(scale * height / 64) * 64
  663. return width, height
  664. class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
  665. sampler = None
  666. def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, hr_second_pass_steps: int = 0, hr_resize_x: int = 0, hr_resize_y: int = 0, hr_sampler_name: str = None, hr_prompt: str = '', hr_negative_prompt: str = '', **kwargs):
  667. super().__init__(**kwargs)
  668. self.enable_hr = enable_hr
  669. self.denoising_strength = denoising_strength
  670. self.hr_scale = hr_scale
  671. self.hr_upscaler = hr_upscaler
  672. self.hr_second_pass_steps = hr_second_pass_steps
  673. self.hr_resize_x = hr_resize_x
  674. self.hr_resize_y = hr_resize_y
  675. self.hr_upscale_to_x = hr_resize_x
  676. self.hr_upscale_to_y = hr_resize_y
  677. self.hr_sampler_name = hr_sampler_name
  678. self.hr_prompt = hr_prompt
  679. self.hr_negative_prompt = hr_negative_prompt
  680. self.all_hr_prompts = None
  681. self.all_hr_negative_prompts = None
  682. if firstphase_width != 0 or firstphase_height != 0:
  683. self.hr_upscale_to_x = self.width
  684. self.hr_upscale_to_y = self.height
  685. self.width = firstphase_width
  686. self.height = firstphase_height
  687. self.truncate_x = 0
  688. self.truncate_y = 0
  689. self.applied_old_hires_behavior_to = None
  690. self.hr_prompts = None
  691. self.hr_negative_prompts = None
  692. self.hr_extra_network_data = None
  693. self.cached_hr_uc = [None, None]
  694. self.cached_hr_c = [None, None]
  695. self.hr_c = None
  696. self.hr_uc = None
  697. def init(self, all_prompts, all_seeds, all_subseeds):
  698. if self.enable_hr:
  699. if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
  700. self.extra_generation_params["Hires sampler"] = self.hr_sampler_name
  701. if tuple(self.hr_prompt) != tuple(self.prompt):
  702. self.extra_generation_params["Hires prompt"] = self.hr_prompt
  703. if tuple(self.hr_negative_prompt) != tuple(self.negative_prompt):
  704. self.extra_generation_params["Hires negative prompt"] = self.hr_negative_prompt
  705. if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height):
  706. self.hr_resize_x = self.width
  707. self.hr_resize_y = self.height
  708. self.hr_upscale_to_x = self.width
  709. self.hr_upscale_to_y = self.height
  710. self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height)
  711. self.applied_old_hires_behavior_to = (self.width, self.height)
  712. if self.hr_resize_x == 0 and self.hr_resize_y == 0:
  713. self.extra_generation_params["Hires upscale"] = self.hr_scale
  714. self.hr_upscale_to_x = int(self.width * self.hr_scale)
  715. self.hr_upscale_to_y = int(self.height * self.hr_scale)
  716. else:
  717. self.extra_generation_params["Hires resize"] = f"{self.hr_resize_x}x{self.hr_resize_y}"
  718. if self.hr_resize_y == 0:
  719. self.hr_upscale_to_x = self.hr_resize_x
  720. self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
  721. elif self.hr_resize_x == 0:
  722. self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
  723. self.hr_upscale_to_y = self.hr_resize_y
  724. else:
  725. target_w = self.hr_resize_x
  726. target_h = self.hr_resize_y
  727. src_ratio = self.width / self.height
  728. dst_ratio = self.hr_resize_x / self.hr_resize_y
  729. if src_ratio < dst_ratio:
  730. self.hr_upscale_to_x = self.hr_resize_x
  731. self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
  732. else:
  733. self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
  734. self.hr_upscale_to_y = self.hr_resize_y
  735. self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f
  736. self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f
  737. # special case: the user has chosen to do nothing
  738. if self.hr_upscale_to_x == self.width and self.hr_upscale_to_y == self.height:
  739. self.enable_hr = False
  740. self.denoising_strength = None
  741. self.extra_generation_params.pop("Hires upscale", None)
  742. self.extra_generation_params.pop("Hires resize", None)
  743. return
  744. if not state.processing_has_refined_job_count:
  745. if state.job_count == -1:
  746. state.job_count = self.n_iter
  747. shared.total_tqdm.updateTotal((self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count)
  748. state.job_count = state.job_count * 2
  749. state.processing_has_refined_job_count = True
  750. if self.hr_second_pass_steps:
  751. self.extra_generation_params["Hires steps"] = self.hr_second_pass_steps
  752. if self.hr_upscaler is not None:
  753. self.extra_generation_params["Hires upscaler"] = self.hr_upscaler
  754. def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
  755. self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
  756. latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
  757. if self.enable_hr and latent_scale_mode is None:
  758. if not any(x.name == self.hr_upscaler for x in shared.sd_upscalers):
  759. raise Exception(f"could not find upscaler named {self.hr_upscaler}")
  760. x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
  761. samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
  762. if not self.enable_hr:
  763. return samples
  764. self.is_hr_pass = True
  765. target_width = self.hr_upscale_to_x
  766. target_height = self.hr_upscale_to_y
  767. def save_intermediate(image, index):
  768. """saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images"""
  769. if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix:
  770. return
  771. if not isinstance(image, Image.Image):
  772. image = sd_samplers.sample_to_image(image, index, approximation=0)
  773. info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index)
  774. images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, suffix="-before-highres-fix")
  775. if latent_scale_mode is not None:
  776. for i in range(samples.shape[0]):
  777. save_intermediate(samples, i)
  778. samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=latent_scale_mode["mode"], antialias=latent_scale_mode["antialias"])
  779. # Avoid making the inpainting conditioning unless necessary as
  780. # this does need some extra compute to decode / encode the image again.
  781. if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0:
  782. image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples)
  783. else:
  784. image_conditioning = self.txt2img_image_conditioning(samples)
  785. else:
  786. decoded_samples = decode_first_stage(self.sd_model, samples)
  787. lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
  788. batch_images = []
  789. for i, x_sample in enumerate(lowres_samples):
  790. x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
  791. x_sample = x_sample.astype(np.uint8)
  792. image = Image.fromarray(x_sample)
  793. save_intermediate(image, i)
  794. image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler)
  795. image = np.array(image).astype(np.float32) / 255.0
  796. image = np.moveaxis(image, 2, 0)
  797. batch_images.append(image)
  798. decoded_samples = torch.from_numpy(np.array(batch_images))
  799. decoded_samples = decoded_samples.to(shared.device)
  800. decoded_samples = 2. * decoded_samples - 1.
  801. samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
  802. image_conditioning = self.img2img_image_conditioning(decoded_samples, samples)
  803. shared.state.nextjob()
  804. img2img_sampler_name = self.hr_sampler_name or self.sampler_name
  805. if self.sampler_name in ['PLMS', 'UniPC']: # PLMS/UniPC do not support img2img so we just silently switch to DDIM
  806. img2img_sampler_name = 'DDIM'
  807. self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model)
  808. samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]
  809. noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self)
  810. # GC now before running the next img2img to prevent running out of memory
  811. x = None
  812. devices.torch_gc()
  813. if not self.disable_extra_networks:
  814. with devices.autocast():
  815. extra_networks.activate(self, self.hr_extra_network_data)
  816. with devices.autocast():
  817. self.calculate_hr_conds()
  818. sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True))
  819. samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
  820. sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio())
  821. self.is_hr_pass = False
  822. return samples
  823. def close(self):
  824. self.cached_hr_uc = [None, None]
  825. self.cached_hr_c = [None, None]
  826. self.hr_c = None
  827. self.hr_uc = None
  828. def setup_prompts(self):
  829. super().setup_prompts()
  830. if not self.enable_hr:
  831. return
  832. if self.hr_prompt == '':
  833. self.hr_prompt = self.prompt
  834. if self.hr_negative_prompt == '':
  835. self.hr_negative_prompt = self.negative_prompt
  836. if type(self.hr_prompt) == list:
  837. self.all_hr_prompts = self.hr_prompt
  838. else:
  839. self.all_hr_prompts = self.batch_size * self.n_iter * [self.hr_prompt]
  840. if type(self.hr_negative_prompt) == list:
  841. self.all_hr_negative_prompts = self.hr_negative_prompt
  842. else:
  843. self.all_hr_negative_prompts = self.batch_size * self.n_iter * [self.hr_negative_prompt]
  844. self.all_hr_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_hr_prompts]
  845. self.all_hr_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_hr_negative_prompts]
  846. def calculate_hr_conds(self):
  847. if self.hr_c is not None:
  848. return
  849. self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.hr_negative_prompts, self.steps * self.step_multiplier, [self.cached_hr_uc, self.cached_uc], self.hr_extra_network_data)
  850. self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.hr_prompts, self.steps * self.step_multiplier, [self.cached_hr_c, self.cached_c], self.hr_extra_network_data)
  851. def setup_conds(self):
  852. super().setup_conds()
  853. self.hr_uc = None
  854. self.hr_c = None
  855. if self.enable_hr:
  856. if shared.opts.hires_fix_use_firstpass_conds:
  857. self.calculate_hr_conds()
  858. elif lowvram.is_enabled(shared.sd_model): # if in lowvram mode, we need to calculate conds right away, before the cond NN is unloaded
  859. with devices.autocast():
  860. extra_networks.activate(self, self.hr_extra_network_data)
  861. self.calculate_hr_conds()
  862. with devices.autocast():
  863. extra_networks.activate(self, self.extra_network_data)
  864. def parse_extra_network_prompts(self):
  865. res = super().parse_extra_network_prompts()
  866. if self.enable_hr:
  867. self.hr_prompts = self.all_hr_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
  868. self.hr_negative_prompts = self.all_hr_negative_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
  869. self.hr_prompts, self.hr_extra_network_data = extra_networks.parse_prompts(self.hr_prompts)
  870. return res
  871. class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
  872. sampler = None
  873. def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: float = None, mask: Any = None, mask_blur: int = None, mask_blur_x: int = 4, mask_blur_y: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs):
  874. super().__init__(**kwargs)
  875. self.init_images = init_images
  876. self.resize_mode: int = resize_mode
  877. self.denoising_strength: float = denoising_strength
  878. self.image_cfg_scale: float = image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None
  879. self.init_latent = None
  880. self.image_mask = mask
  881. self.latent_mask = None
  882. self.mask_for_overlay = None
  883. if mask_blur is not None:
  884. mask_blur_x = mask_blur
  885. mask_blur_y = mask_blur
  886. self.mask_blur_x = mask_blur_x
  887. self.mask_blur_y = mask_blur_y
  888. self.inpainting_fill = inpainting_fill
  889. self.inpaint_full_res = inpaint_full_res
  890. self.inpaint_full_res_padding = inpaint_full_res_padding
  891. self.inpainting_mask_invert = inpainting_mask_invert
  892. self.initial_noise_multiplier = opts.initial_noise_multiplier if initial_noise_multiplier is None else initial_noise_multiplier
  893. self.mask = None
  894. self.nmask = None
  895. self.image_conditioning = None
  896. def init(self, all_prompts, all_seeds, all_subseeds):
  897. self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
  898. crop_region = None
  899. image_mask = self.image_mask
  900. if image_mask is not None:
  901. image_mask = image_mask.convert('L')
  902. if self.inpainting_mask_invert:
  903. image_mask = ImageOps.invert(image_mask)
  904. if self.mask_blur_x > 0:
  905. np_mask = np.array(image_mask)
  906. kernel_size = 2 * int(4 * self.mask_blur_x + 0.5) + 1
  907. np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), self.mask_blur_x)
  908. image_mask = Image.fromarray(np_mask)
  909. if self.mask_blur_y > 0:
  910. np_mask = np.array(image_mask)
  911. kernel_size = 2 * int(4 * self.mask_blur_y + 0.5) + 1
  912. np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), self.mask_blur_y)
  913. image_mask = Image.fromarray(np_mask)
  914. if self.inpaint_full_res:
  915. self.mask_for_overlay = image_mask
  916. mask = image_mask.convert('L')
  917. crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
  918. crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
  919. x1, y1, x2, y2 = crop_region
  920. mask = mask.crop(crop_region)
  921. image_mask = images.resize_image(2, mask, self.width, self.height)
  922. self.paste_to = (x1, y1, x2-x1, y2-y1)
  923. else:
  924. image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
  925. np_mask = np.array(image_mask)
  926. np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
  927. self.mask_for_overlay = Image.fromarray(np_mask)
  928. self.overlay_images = []
  929. latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
  930. add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
  931. if add_color_corrections:
  932. self.color_corrections = []
  933. imgs = []
  934. for img in self.init_images:
  935. # Save init image
  936. if opts.save_init_img:
  937. self.init_img_hash = hashlib.md5(img.tobytes()).hexdigest()
  938. images.save_image(img, path=opts.outdir_init_images, basename=None, forced_filename=self.init_img_hash, save_to_dirs=False)
  939. image = images.flatten(img, opts.img2img_background_color)
  940. if crop_region is None and self.resize_mode != 3:
  941. image = images.resize_image(self.resize_mode, image, self.width, self.height)
  942. if image_mask is not None:
  943. image_masked = Image.new('RGBa', (image.width, image.height))
  944. image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
  945. self.overlay_images.append(image_masked.convert('RGBA'))
  946. # crop_region is not None if we are doing inpaint full res
  947. if crop_region is not None:
  948. image = image.crop(crop_region)
  949. image = images.resize_image(2, image, self.width, self.height)
  950. if image_mask is not None:
  951. if self.inpainting_fill != 1:
  952. image = masking.fill(image, latent_mask)
  953. if add_color_corrections:
  954. self.color_corrections.append(setup_color_correction(image))
  955. image = np.array(image).astype(np.float32) / 255.0
  956. image = np.moveaxis(image, 2, 0)
  957. imgs.append(image)
  958. if len(imgs) == 1:
  959. batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
  960. if self.overlay_images is not None:
  961. self.overlay_images = self.overlay_images * self.batch_size
  962. if self.color_corrections is not None and len(self.color_corrections) == 1:
  963. self.color_corrections = self.color_corrections * self.batch_size
  964. elif len(imgs) <= self.batch_size:
  965. self.batch_size = len(imgs)
  966. batch_images = np.array(imgs)
  967. else:
  968. raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")
  969. image = torch.from_numpy(batch_images)
  970. image = 2. * image - 1.
  971. image = image.to(shared.device)
  972. self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
  973. if self.resize_mode == 3:
  974. self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
  975. if image_mask is not None:
  976. init_mask = latent_mask
  977. latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
  978. latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
  979. latmask = latmask[0]
  980. latmask = np.around(latmask)
  981. latmask = np.tile(latmask[None], (4, 1, 1))
  982. self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
  983. self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)
  984. # this needs to be fixed to be done in sample() using actual seeds for batches
  985. if self.inpainting_fill == 2:
  986. self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
  987. elif self.inpainting_fill == 3:
  988. self.init_latent = self.init_latent * self.mask
  989. self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, image_mask)
  990. def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
  991. x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
  992. if self.initial_noise_multiplier != 1.0:
  993. self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier
  994. x *= self.initial_noise_multiplier
  995. samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
  996. if self.mask is not None:
  997. samples = samples * self.nmask + self.init_latent * self.mask
  998. del x
  999. devices.torch_gc()
  1000. return samples
  1001. def get_token_merging_ratio(self, for_hr=False):
  1002. return self.token_merging_ratio or ("token_merging_ratio" in self.override_settings and opts.token_merging_ratio) or opts.token_merging_ratio_img2img or opts.token_merging_ratio