|
@@ -0,0 +1,82 @@
|
|
|
+import torch
|
|
|
+import network
|
|
|
+
|
|
|
+
|
|
|
+class ModuleTypeOFT(network.ModuleType):
|
|
|
+ def create_module(self, net: network.Network, weights: network.NetworkWeights):
|
|
|
+ if all(x in weights.w for x in ["oft_blocks"]):
|
|
|
+ return NetworkModuleOFT(net, weights)
|
|
|
+
|
|
|
+ return None
|
|
|
+
|
|
|
+# adapted from https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
|
|
|
+class NetworkModuleOFT(network.NetworkModule):
|
|
|
+ def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
|
|
+ super().__init__(net, weights)
|
|
|
+
|
|
|
+ self.oft_blocks = weights.w["oft_blocks"]
|
|
|
+ self.alpha = weights.w["alpha"]
|
|
|
+
|
|
|
+ self.dim = self.oft_blocks.shape[0]
|
|
|
+ self.num_blocks = self.dim
|
|
|
+
|
|
|
+ #if type(self.alpha) == torch.Tensor:
|
|
|
+ # self.alpha = self.alpha.detach().numpy()
|
|
|
+
|
|
|
+ if "Linear" in self.sd_module.__class__.__name__:
|
|
|
+ self.out_dim = self.sd_module.out_features
|
|
|
+ elif "Conv" in self.sd_module.__class__.__name__:
|
|
|
+ self.out_dim = self.sd_module.out_channels
|
|
|
+
|
|
|
+ self.constraint = self.alpha * self.out_dim
|
|
|
+ self.block_size = self.out_dim // self.num_blocks
|
|
|
+
|
|
|
+ self.oft_multiplier = self.multiplier()
|
|
|
+
|
|
|
+ # replace forward method of original linear rather than replacing the module
|
|
|
+ # self.org_forward = self.sd_module.forward
|
|
|
+ # self.sd_module.forward = self.forward
|
|
|
+
|
|
|
+ def get_weight(self):
|
|
|
+ block_Q = self.oft_blocks - self.oft_blocks.transpose(1, 2)
|
|
|
+ norm_Q = torch.norm(block_Q.flatten())
|
|
|
+ new_norm_Q = torch.clamp(norm_Q, max=self.constraint)
|
|
|
+ block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
|
|
|
+ I = torch.eye(self.block_size, device=self.oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
|
|
|
+ block_R = torch.matmul(I + block_Q, (I - block_Q).inverse())
|
|
|
+
|
|
|
+ block_R_weighted = self.oft_multiplier * block_R + (1 - self.oft_multiplier) * I
|
|
|
+ R = torch.block_diag(*block_R_weighted)
|
|
|
+
|
|
|
+ return R
|
|
|
+
|
|
|
+ def calc_updown(self, orig_weight):
|
|
|
+ oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
|
|
|
+ block_Q = oft_blocks - oft_blocks.transpose(1, 2)
|
|
|
+ norm_Q = torch.norm(block_Q.flatten())
|
|
|
+ new_norm_Q = torch.clamp(norm_Q, max=self.constraint)
|
|
|
+ block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
|
|
|
+ I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
|
|
|
+ block_R = torch.matmul(I + block_Q, (I - block_Q).inverse())
|
|
|
+
|
|
|
+ block_R_weighted = self.oft_multiplier * block_R + (1 - self.oft_multiplier) * I
|
|
|
+ R = torch.block_diag(*block_R_weighted)
|
|
|
+ #R = self.get_weight().to(orig_weight.device, dtype=orig_weight.dtype)
|
|
|
+ # W = R*W_0
|
|
|
+ updown = orig_weight + R
|
|
|
+ output_shape = [R.size(0), orig_weight.size(1)]
|
|
|
+ return self.finalize_updown(updown, orig_weight, output_shape)
|
|
|
+
|
|
|
+ # def forward(self, x, y=None):
|
|
|
+ # x = self.org_forward(x)
|
|
|
+ # if self.oft_multiplier == 0.0:
|
|
|
+ # return x
|
|
|
+
|
|
|
+ # R = self.get_weight().to(x.device, dtype=x.dtype)
|
|
|
+ # if x.dim() == 4:
|
|
|
+ # x = x.permute(0, 2, 3, 1)
|
|
|
+ # x = torch.matmul(x, R)
|
|
|
+ # x = x.permute(0, 3, 1, 2)
|
|
|
+ # else:
|
|
|
+ # x = torch.matmul(x, R)
|
|
|
+ # return x
|