|
@@ -155,10 +155,16 @@ class LoadStateDictOnMeta(ReplaceHelper):
|
|
|
```
|
|
|
"""
|
|
|
|
|
|
- def __init__(self, state_dict, device):
|
|
|
+ def __init__(self, state_dict, device, weight_dtype_conversion=None):
|
|
|
super().__init__()
|
|
|
self.state_dict = state_dict
|
|
|
self.device = device
|
|
|
+ self.weight_dtype_conversion = weight_dtype_conversion or {}
|
|
|
+ self.default_dtype = self.weight_dtype_conversion.get('')
|
|
|
+
|
|
|
+ def get_weight_dtype(self, key):
|
|
|
+ key_first_term, _ = key.split('.', 1)
|
|
|
+ return self.weight_dtype_conversion.get(key_first_term, self.default_dtype)
|
|
|
|
|
|
def __enter__(self):
|
|
|
if shared.cmd_opts.disable_model_loading_ram_optimization:
|
|
@@ -167,24 +173,24 @@ class LoadStateDictOnMeta(ReplaceHelper):
|
|
|
sd = self.state_dict
|
|
|
device = self.device
|
|
|
|
|
|
- def load_from_state_dict(original, self, state_dict, prefix, *args, **kwargs):
|
|
|
+ def load_from_state_dict(original, module, state_dict, prefix, *args, **kwargs):
|
|
|
used_param_keys = []
|
|
|
|
|
|
- for name, param in self._parameters.items():
|
|
|
+ for name, param in module._parameters.items():
|
|
|
if param is None:
|
|
|
continue
|
|
|
|
|
|
key = prefix + name
|
|
|
sd_param = sd.pop(key, None)
|
|
|
if sd_param is not None:
|
|
|
- state_dict[key] = sd_param
|
|
|
+ state_dict[key] = sd_param.to(dtype=self.get_weight_dtype(key))
|
|
|
used_param_keys.append(key)
|
|
|
|
|
|
if param.is_meta:
|
|
|
dtype = sd_param.dtype if sd_param is not None else param.dtype
|
|
|
- self._parameters[name] = torch.nn.parameter.Parameter(torch.zeros_like(param, device=device, dtype=dtype), requires_grad=param.requires_grad)
|
|
|
+ module._parameters[name] = torch.nn.parameter.Parameter(torch.zeros_like(param, device=device, dtype=dtype), requires_grad=param.requires_grad)
|
|
|
|
|
|
- for name in self._buffers:
|
|
|
+ for name in module._buffers:
|
|
|
key = prefix + name
|
|
|
|
|
|
sd_param = sd.pop(key, None)
|
|
@@ -192,12 +198,12 @@ class LoadStateDictOnMeta(ReplaceHelper):
|
|
|
state_dict[key] = sd_param
|
|
|
used_param_keys.append(key)
|
|
|
|
|
|
- original(self, state_dict, prefix, *args, **kwargs)
|
|
|
+ original(module, state_dict, prefix, *args, **kwargs)
|
|
|
|
|
|
for key in used_param_keys:
|
|
|
state_dict.pop(key, None)
|
|
|
|
|
|
- def load_state_dict(original, self, state_dict, strict=True):
|
|
|
+ def load_state_dict(original, module, state_dict, strict=True):
|
|
|
"""torch makes a lot of copies of the dictionary with weights, so just deleting entries from state_dict does not help
|
|
|
because the same values are stored in multiple copies of the dict. The trick used here is to give torch a dict with
|
|
|
all weights on meta device, i.e. deleted, and then it doesn't matter how many copies torch makes.
|
|
@@ -212,7 +218,7 @@ class LoadStateDictOnMeta(ReplaceHelper):
|
|
|
if state_dict == sd:
|
|
|
state_dict = {k: v.to(device="meta", dtype=v.dtype) for k, v in state_dict.items()}
|
|
|
|
|
|
- original(self, state_dict, strict=strict)
|
|
|
+ original(module, state_dict, strict=strict)
|
|
|
|
|
|
module_load_state_dict = self.replace(torch.nn.Module, 'load_state_dict', lambda *args, **kwargs: load_state_dict(module_load_state_dict, *args, **kwargs))
|
|
|
module_load_from_state_dict = self.replace(torch.nn.Module, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(module_load_from_state_dict, *args, **kwargs))
|