Эх сурвалжийг харах

Merge pull request #16164 from AUTOMATIC1111/sd3_textual_inversion

sd3 TI support
AUTOMATIC1111 1 жил өмнө
parent
commit
b4d62a05af

+ 5 - 3
modules/models/sd3/other_impls.py

@@ -5,6 +5,8 @@ import math
 from torch import nn
 from transformers import CLIPTokenizer, T5TokenizerFast
 
+from modules import sd_hijack
+
 
 #################################################################################################
 ### Core/Utility
@@ -110,9 +112,9 @@ class CLIPEncoder(torch.nn.Module):
 
 
 class CLIPEmbeddings(torch.nn.Module):
-    def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None):
+    def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None, textual_inversion_key="clip_l"):
         super().__init__()
-        self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
+        self.token_embedding = sd_hijack.TextualInversionEmbeddings(vocab_size, embed_dim, dtype=dtype, device=device, textual_inversion_key=textual_inversion_key)
         self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
 
     def forward(self, input_tokens):
@@ -127,7 +129,7 @@ class CLIPTextModel_(torch.nn.Module):
         intermediate_size = config_dict["intermediate_size"]
         intermediate_activation = config_dict["hidden_act"]
         super().__init__()
-        self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device)
+        self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device, textual_inversion_key=config_dict.get('textual_inversion_key', 'clip_l'))
         self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device)
         self.final_layer_norm = nn.LayerNorm(embed_dim, dtype=dtype, device=device)
 

+ 5 - 1
modules/models/sd3/sd3_cond.py

@@ -40,6 +40,7 @@ CLIPG_CONFIG = {
     "intermediate_size": 5120,
     "num_attention_heads": 20,
     "num_hidden_layers": 32,
+    "textual_inversion_key": "clip_g",
 }
 
 T5_URL = "https://huggingface.co/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/t5xxl_fp16.safetensors"
@@ -204,7 +205,10 @@ class SD3Cond(torch.nn.Module):
                 self.t5xxl.transformer.load_state_dict(SafetensorsMapping(file), strict=False)
 
     def encode_embedding_init_text(self, init_text, nvpt):
-        return torch.tensor([[0]], device=devices.device) # XXX
+        return self.model_lg.encode_embedding_init_text(init_text, nvpt)
+
+    def tokenize(self, texts):
+        return self.model_lg.tokenize(texts)
 
     def medvram_modules(self):
         return [self.clip_g, self.clip_l, self.t5xxl]

+ 16 - 1
modules/sd_hijack.py

@@ -359,13 +359,28 @@ class EmbeddingsWithFixes(torch.nn.Module):
                 vec = embedding.vec[self.textual_inversion_key] if isinstance(embedding.vec, dict) else embedding.vec
                 emb = devices.cond_cast_unet(vec)
                 emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
-                tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]])
+                tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]]).to(dtype=inputs_embeds.dtype)
 
             vecs.append(tensor)
 
         return torch.stack(vecs)
 
 
+class TextualInversionEmbeddings(torch.nn.Embedding):
+    def __init__(self, num_embeddings: int, embedding_dim: int, textual_inversion_key='clip_l', **kwargs):
+        super().__init__(num_embeddings, embedding_dim, **kwargs)
+
+        self.embeddings = model_hijack
+        self.textual_inversion_key = textual_inversion_key
+
+    @property
+    def wrapped(self):
+        return super().forward
+
+    def forward(self, input_ids):
+        return EmbeddingsWithFixes.forward(self, input_ids)
+
+
 def add_circular_option_to_conv_2d():
     conv2d_constructor = torch.nn.Conv2d.__init__