Browse Source

Merge pull request #16149 from AndreyRGW/devpatch1

Add Normal and DDIM Schedulers
AUTOMATIC1111 1 year ago
parent
commit
b282b47b85
1 changed files with 29 additions and 0 deletions
  1. 29 0
      modules/sd_schedulers.py

+ 29 - 0
modules/sd_schedulers.py

@@ -76,6 +76,33 @@ def kl_optimal(n, sigma_min, sigma_max, device):
     sigmas = torch.tan(step_indices / n * alpha_min + (1.0 - step_indices / n) * alpha_max)
     return sigmas
 
+def normal_scheduler(n, sigma_min, sigma_max, inner_model, device, sgm=False, floor=False):
+    start = inner_model.sigma_to_t(torch.tensor(sigma_max))
+    end = inner_model.sigma_to_t(torch.tensor(sigma_min))
+
+    if sgm:
+        timesteps = torch.linspace(start, end, n + 1)[:-1]
+    else:
+        timesteps = torch.linspace(start, end, n)
+
+    sigs = []
+    for x in range(len(timesteps)):
+        ts = timesteps[x]
+        sigs.append(inner_model.t_to_sigma(ts))
+    sigs += [0.0]
+    return torch.FloatTensor(sigs).to(device)
+
+def ddim_scheduler(n, sigma_min, sigma_max, inner_model, device):
+    sigs = []
+    ss = max(len(inner_model.sigmas) // n, 1)
+    x = 1
+    while x < len(inner_model.sigmas):
+        sigs += [float(inner_model.sigmas[x])]
+        x += ss
+    sigs = sigs[::-1]
+    sigs += [0.0]
+    return torch.FloatTensor(sigs).to(device)
+
 
 schedulers = [
     Scheduler('automatic', 'Automatic', None),
@@ -86,6 +113,8 @@ schedulers = [
     Scheduler('sgm_uniform', 'SGM Uniform', sgm_uniform, need_inner_model=True, aliases=["SGMUniform"]),
     Scheduler('kl_optimal', 'KL Optimal', kl_optimal),
     Scheduler('align_your_steps', 'Align Your Steps', get_align_your_steps_sigmas),
+    Scheduler('normal', 'Normal', normal_scheduler, need_inner_model=True),
+    Scheduler('ddim', 'DDIM', ddim_scheduler, need_inner_model=True),
 ]
 
 schedulers_map = {**{x.name: x for x in schedulers}, **{x.label: x for x in schedulers}}