Browse Source

split the new sampler into a different file

AUTOMATIC1111 2 years ago
parent
commit
aefe1325df
2 changed files with 4 additions and 546 deletions
  1. 0 475
      modules/sd_samplers_extra.py
  2. 4 71
      modules/sd_samplers_kdiffusion.py

+ 0 - 475
modules/sd_samplers_extra.py

@@ -1,38 +1,5 @@
-from collections import deque
 import torch
-import inspect
 import k_diffusion.sampling
-from modules import prompt_parser, devices, sd_samplers_common
-
-from modules.shared import opts, state
-import modules.shared as shared
-from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
-from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
-from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback
-
-samplers_k_diffusion = [
-    ('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {"uses_ensd": True}),
-    ('Euler', 'sample_euler', ['k_euler'], {}),
-    ('LMS', 'sample_lms', ['k_lms'], {}),
-    ('Heun', 'sample_heun', ['k_heun'], {"second_order": True}),
-    ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}),
-    ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True, "uses_ensd": True}),
-    ('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {"uses_ensd": True, "second_order": True}),
-    ('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
-    ('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {"second_order": True, "brownian_noise": True}),
-    ('DPM++ 2M SDE', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {"brownian_noise": True}),
-    ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {"uses_ensd": True}),
-    ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {"uses_ensd": True}),
-    ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
-    ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
-    ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
-    ('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras', "uses_ensd": True, "second_order": True}),
-    ('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
-    ('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}),
-    ('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {'scheduler': 'karras', "brownian_noise": True}),
-    ('Restart (new)', 'restart_sampler', ['restart'], {'scheduler': 'karras', "second_order": True}),
-]
-
 
 @torch.no_grad()
 def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list = None):
@@ -101,445 +68,3 @@ def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=No
         last_sigma = step_list[i][1]
     return x
 
-samplers_data_k_diffusion = [
-    sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
-    for label, funcname, aliases, options in samplers_k_diffusion
-    if (hasattr(k_diffusion.sampling, funcname) or funcname == 'restart_sampler')
-]
-
-sampler_extra_params = {
-    'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
-    'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
-    'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
-}
-
-k_diffusion_samplers_map = {x.name: x for x in samplers_data_k_diffusion}
-k_diffusion_scheduler = {
-    'Automatic': None,
-    'karras': k_diffusion.sampling.get_sigmas_karras,
-    'exponential': k_diffusion.sampling.get_sigmas_exponential,
-    'polyexponential': k_diffusion.sampling.get_sigmas_polyexponential
-}
-
-
-def catenate_conds(conds):
-    if not isinstance(conds[0], dict):
-        return torch.cat(conds)
-
-    return {key: torch.cat([x[key] for x in conds]) for key in conds[0].keys()}
-
-
-def subscript_cond(cond, a, b):
-    if not isinstance(cond, dict):
-        return cond[a:b]
-
-    return {key: vec[a:b] for key, vec in cond.items()}
-
-
-def pad_cond(tensor, repeats, empty):
-    if not isinstance(tensor, dict):
-        return torch.cat([tensor, empty.repeat((tensor.shape[0], repeats, 1))], axis=1)
-
-    tensor['crossattn'] = pad_cond(tensor['crossattn'], repeats, empty)
-    return tensor
-
-
-class CFGDenoiser(torch.nn.Module):
-    """
-    Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet)
-    that can take a noisy picture and produce a noise-free picture using two guidances (prompts)
-    instead of one. Originally, the second prompt is just an empty string, but we use non-empty
-    negative prompt.
-    """
-
-    def __init__(self, model):
-        super().__init__()
-        self.inner_model = model
-        self.mask = None
-        self.nmask = None
-        self.init_latent = None
-        self.step = 0
-        self.image_cfg_scale = None
-        self.padded_cond_uncond = False
-
-    def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
-        denoised_uncond = x_out[-uncond.shape[0]:]
-        denoised = torch.clone(denoised_uncond)
-
-        for i, conds in enumerate(conds_list):
-            for cond_index, weight in conds:
-                denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
-
-        return denoised
-
-    def combine_denoised_for_edit_model(self, x_out, cond_scale):
-        out_cond, out_img_cond, out_uncond = x_out.chunk(3)
-        denoised = out_uncond + cond_scale * (out_cond - out_img_cond) + self.image_cfg_scale * (out_img_cond - out_uncond)
-
-        return denoised
-
-    def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
-        if state.interrupted or state.skipped:
-            raise sd_samplers_common.InterruptedException
-
-        # at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling,
-        # so is_edit_model is set to False to support AND composition.
-        is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0
-
-        conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
-        uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
-
-        assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"
-
-        batch_size = len(conds_list)
-        repeats = [len(conds_list[i]) for i in range(batch_size)]
-
-        if shared.sd_model.model.conditioning_key == "crossattn-adm":
-            image_uncond = torch.zeros_like(image_cond)
-            make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": [c_crossattn], "c_adm": c_adm}
-        else:
-            image_uncond = image_cond
-            if isinstance(uncond, dict):
-                make_condition_dict = lambda c_crossattn, c_concat: {**c_crossattn, "c_concat": [c_concat]}
-            else:
-                make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": [c_crossattn], "c_concat": [c_concat]}
-
-        if not is_edit_model:
-            x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
-            sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
-            image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond])
-        else:
-            x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x])
-            sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma])
-            image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)])
-
-        denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps, tensor, uncond)
-        cfg_denoiser_callback(denoiser_params)
-        x_in = denoiser_params.x
-        image_cond_in = denoiser_params.image_cond
-        sigma_in = denoiser_params.sigma
-        tensor = denoiser_params.text_cond
-        uncond = denoiser_params.text_uncond
-        skip_uncond = False
-
-        # alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
-        if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
-            skip_uncond = True
-            x_in = x_in[:-batch_size]
-            sigma_in = sigma_in[:-batch_size]
-
-        self.padded_cond_uncond = False
-        if shared.opts.pad_cond_uncond and tensor.shape[1] != uncond.shape[1]:
-            empty = shared.sd_model.cond_stage_model_empty_prompt
-            num_repeats = (tensor.shape[1] - uncond.shape[1]) // empty.shape[1]
-
-            if num_repeats < 0:
-                tensor = pad_cond(tensor, -num_repeats, empty)
-                self.padded_cond_uncond = True
-            elif num_repeats > 0:
-                uncond = pad_cond(uncond, num_repeats, empty)
-                self.padded_cond_uncond = True
-
-        if tensor.shape[1] == uncond.shape[1] or skip_uncond:
-            if is_edit_model:
-                cond_in = catenate_conds([tensor, uncond, uncond])
-            elif skip_uncond:
-                cond_in = tensor
-            else:
-                cond_in = catenate_conds([tensor, uncond])
-
-            if shared.batch_cond_uncond:
-                x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict(cond_in, image_cond_in))
-            else:
-                x_out = torch.zeros_like(x_in)
-                for batch_offset in range(0, x_out.shape[0], batch_size):
-                    a = batch_offset
-                    b = a + batch_size
-                    x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(subscript_cond(cond_in, a, b), image_cond_in[a:b]))
-        else:
-            x_out = torch.zeros_like(x_in)
-            batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
-            for batch_offset in range(0, tensor.shape[0], batch_size):
-                a = batch_offset
-                b = min(a + batch_size, tensor.shape[0])
-
-                if not is_edit_model:
-                    c_crossattn = subscript_cond(tensor, a, b)
-                else:
-                    c_crossattn = torch.cat([tensor[a:b]], uncond)
-
-                x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))
-
-            if not skip_uncond:
-                x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict(uncond, image_cond_in[-uncond.shape[0]:]))
-
-        denoised_image_indexes = [x[0][0] for x in conds_list]
-        if skip_uncond:
-            fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes])
-            x_out = torch.cat([x_out, fake_uncond])  # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be
-
-        denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps, self.inner_model)
-        cfg_denoised_callback(denoised_params)
-
-        devices.test_for_nans(x_out, "unet")
-
-        if opts.live_preview_content == "Prompt":
-            sd_samplers_common.store_latent(torch.cat([x_out[i:i+1] for i in denoised_image_indexes]))
-        elif opts.live_preview_content == "Negative prompt":
-            sd_samplers_common.store_latent(x_out[-uncond.shape[0]:])
-
-        if is_edit_model:
-            denoised = self.combine_denoised_for_edit_model(x_out, cond_scale)
-        elif skip_uncond:
-            denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0)
-        else:
-            denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
-
-        if self.mask is not None:
-            denoised = self.init_latent * self.mask + self.nmask * denoised
-
-        after_cfg_callback_params = AfterCFGCallbackParams(denoised, state.sampling_step, state.sampling_steps)
-        cfg_after_cfg_callback(after_cfg_callback_params)
-        denoised = after_cfg_callback_params.x
-
-        self.step += 1
-        return denoised
-
-
-class TorchHijack:
-    def __init__(self, sampler_noises):
-        # Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
-        # implementation.
-        self.sampler_noises = deque(sampler_noises)
-
-    def __getattr__(self, item):
-        if item == 'randn_like':
-            return self.randn_like
-
-        if hasattr(torch, item):
-            return getattr(torch, item)
-
-        raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
-
-    def randn_like(self, x):
-        if self.sampler_noises:
-            noise = self.sampler_noises.popleft()
-            if noise.shape == x.shape:
-                return noise
-
-        if opts.randn_source == "CPU" or x.device.type == 'mps':
-            return torch.randn_like(x, device=devices.cpu).to(x.device)
-        else:
-            return torch.randn_like(x)
-
-
-class KDiffusionSampler:
-    def __init__(self, funcname, sd_model):
-        denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
-
-        self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
-        self.funcname = funcname
-        self.func = getattr(k_diffusion.sampling, self.funcname) if funcname != "restart_sampler" else restart_sampler
-        self.extra_params = sampler_extra_params.get(funcname, [])
-        self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
-        self.sampler_noises = None
-        self.stop_at = None
-        self.eta = None
-        self.config = None  # set by the function calling the constructor
-        self.last_latent = None
-        self.s_min_uncond = None
-
-        self.conditioning_key = sd_model.model.conditioning_key
-
-    def callback_state(self, d):
-        step = d['i']
-        latent = d["denoised"]
-        if opts.live_preview_content == "Combined":
-            sd_samplers_common.store_latent(latent)
-        self.last_latent = latent
-
-        if self.stop_at is not None and step > self.stop_at:
-            raise sd_samplers_common.InterruptedException
-
-        state.sampling_step = step
-        shared.total_tqdm.update()
-
-    def launch_sampling(self, steps, func):
-        state.sampling_steps = steps
-        state.sampling_step = 0
-
-        try:
-            return func()
-        except RecursionError:
-            print(
-                'Encountered RecursionError during sampling, returning last latent. '
-                'rho >5 with a polyexponential scheduler may cause this error. '
-                'You should try to use a smaller rho value instead.'
-            )
-            return self.last_latent
-        except sd_samplers_common.InterruptedException:
-            return self.last_latent
-
-    def number_of_needed_noises(self, p):
-        return p.steps
-
-    def initialize(self, p):
-        self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
-        self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
-        self.model_wrap_cfg.step = 0
-        self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
-        self.eta = p.eta if p.eta is not None else opts.eta_ancestral
-        self.s_min_uncond = getattr(p, 's_min_uncond', 0.0)
-
-        k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
-
-        extra_params_kwargs = {}
-        for param_name in self.extra_params:
-            if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
-                extra_params_kwargs[param_name] = getattr(p, param_name)
-
-        if 'eta' in inspect.signature(self.func).parameters:
-            if self.eta != 1.0:
-                p.extra_generation_params["Eta"] = self.eta
-
-            extra_params_kwargs['eta'] = self.eta
-
-        return extra_params_kwargs
-
-    def get_sigmas(self, p, steps):
-        discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
-        if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma:
-            discard_next_to_last_sigma = True
-            p.extra_generation_params["Discard penultimate sigma"] = True
-
-        steps += 1 if discard_next_to_last_sigma else 0
-
-        if p.sampler_noise_scheduler_override:
-            sigmas = p.sampler_noise_scheduler_override(steps)
-        elif opts.k_sched_type != "Automatic":
-            m_sigma_min, m_sigma_max = (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
-            sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (m_sigma_min, m_sigma_max)
-            sigmas_kwargs = {
-                'sigma_min': sigma_min,
-                'sigma_max': sigma_max,
-            }
-
-            sigmas_func = k_diffusion_scheduler[opts.k_sched_type]
-            p.extra_generation_params["Schedule type"] = opts.k_sched_type
-
-            if opts.sigma_min != m_sigma_min and opts.sigma_min != 0:
-                sigmas_kwargs['sigma_min'] = opts.sigma_min
-                p.extra_generation_params["Schedule min sigma"] = opts.sigma_min
-            if opts.sigma_max != m_sigma_max and opts.sigma_max != 0:
-                sigmas_kwargs['sigma_max'] = opts.sigma_max
-                p.extra_generation_params["Schedule max sigma"] = opts.sigma_max
-
-            default_rho = 1. if opts.k_sched_type == "polyexponential" else 7.
-
-            if opts.k_sched_type != 'exponential' and opts.rho != 0 and opts.rho != default_rho:
-                sigmas_kwargs['rho'] = opts.rho
-                p.extra_generation_params["Schedule rho"] = opts.rho
-
-            sigmas = sigmas_func(n=steps, **sigmas_kwargs, device=shared.device)
-        elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
-            sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
-
-            sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device)
-        else:
-            sigmas = self.model_wrap.get_sigmas(steps)
-
-        if discard_next_to_last_sigma:
-            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
-
-        return sigmas
-
-    def create_noise_sampler(self, x, sigmas, p):
-        """For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""
-        if shared.opts.no_dpmpp_sde_batch_determinism:
-            return None
-
-        from k_diffusion.sampling import BrownianTreeNoiseSampler
-        sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
-        current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
-        return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds)
-
-    def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
-        steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
-
-        sigmas = self.get_sigmas(p, steps)
-
-        sigma_sched = sigmas[steps - t_enc - 1:]
-        xi = x + noise * sigma_sched[0]
-
-        extra_params_kwargs = self.initialize(p)
-        parameters = inspect.signature(self.func).parameters
-
-        if 'sigma_min' in parameters:
-            ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
-            extra_params_kwargs['sigma_min'] = sigma_sched[-2]
-        if 'sigma_max' in parameters:
-            extra_params_kwargs['sigma_max'] = sigma_sched[0]
-        if 'n' in parameters:
-            extra_params_kwargs['n'] = len(sigma_sched) - 1
-        if 'sigma_sched' in parameters:
-            extra_params_kwargs['sigma_sched'] = sigma_sched
-        if 'sigmas' in parameters:
-            extra_params_kwargs['sigmas'] = sigma_sched
-
-        if self.config.options.get('brownian_noise', False):
-            noise_sampler = self.create_noise_sampler(x, sigmas, p)
-            extra_params_kwargs['noise_sampler'] = noise_sampler
-
-        self.model_wrap_cfg.init_latent = x
-        self.last_latent = x
-        extra_args = {
-            'cond': conditioning,
-            'image_cond': image_conditioning,
-            'uncond': unconditional_conditioning,
-            'cond_scale': p.cfg_scale,
-            's_min_uncond': self.s_min_uncond
-        }
-
-        samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
-
-        if self.model_wrap_cfg.padded_cond_uncond:
-            p.extra_generation_params["Pad conds"] = True
-
-        return samples
-
-    def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
-        steps = steps or p.steps
-
-        sigmas = self.get_sigmas(p, steps)
-
-        x = x * sigmas[0]
-
-        extra_params_kwargs = self.initialize(p)
-        parameters = inspect.signature(self.func).parameters
-
-        if 'sigma_min' in parameters:
-            extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
-            extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
-            if 'n' in parameters:
-                extra_params_kwargs['n'] = steps
-        else:
-            extra_params_kwargs['sigmas'] = sigmas
-
-        if self.config.options.get('brownian_noise', False):
-            noise_sampler = self.create_noise_sampler(x, sigmas, p)
-            extra_params_kwargs['noise_sampler'] = noise_sampler
-
-        self.last_latent = x
-        samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
-            'cond': conditioning,
-            'image_cond': image_conditioning,
-            'uncond': unconditional_conditioning,
-            'cond_scale': p.cfg_scale,
-            's_min_uncond': self.s_min_uncond
-        }, disable=False, callback=self.callback_state, **extra_params_kwargs))
-
-        if self.model_wrap_cfg.padded_cond_uncond:
-            p.extra_generation_params["Pad conds"] = True
-
-        return samples
-

+ 4 - 71
modules/sd_samplers_kdiffusion.py

@@ -2,7 +2,7 @@ from collections import deque
 import torch
 import inspect
 import k_diffusion.sampling
-from modules import prompt_parser, devices, sd_samplers_common
+from modules import prompt_parser, devices, sd_samplers_common, sd_samplers_extra
 
 from modules.shared import opts, state
 import modules.shared as shared
@@ -30,81 +30,14 @@ samplers_k_diffusion = [
     ('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
     ('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}),
     ('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {'scheduler': 'karras', "brownian_noise": True}),
-    ('Restart (new)', 'restart_sampler', ['restart'], {'scheduler': 'karras', "second_order": True}),
+    ('Restart', sd_samplers_extra.restart_sampler, ['restart'], {'scheduler': 'karras'}),
 ]
 
 
-@torch.no_grad()
-def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list = None):
-    """Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)"""
-    '''Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}'''
-    '''If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list'''
-    from tqdm.auto import trange
-    extra_args = {} if extra_args is None else extra_args
-    s_in = x.new_ones([x.shape[0]])
-    step_id = 0
-    from k_diffusion.sampling import to_d, get_sigmas_karras
-    def heun_step(x, old_sigma, new_sigma, second_order = True):
-        nonlocal step_id
-        denoised = model(x, old_sigma * s_in, **extra_args)
-        d = to_d(x, old_sigma, denoised)
-        if callback is not None:
-            callback({'x': x, 'i': step_id, 'sigma': new_sigma, 'sigma_hat': old_sigma, 'denoised': denoised})
-        dt = new_sigma - old_sigma
-        if new_sigma == 0 or not second_order:
-            # Euler method
-            x = x + d * dt
-        else:
-            # Heun's method
-            x_2 = x + d * dt
-            denoised_2 = model(x_2, new_sigma * s_in, **extra_args)
-            d_2 = to_d(x_2, new_sigma, denoised_2)
-            d_prime = (d + d_2) / 2
-            x = x + d_prime * dt
-        step_id += 1
-        return x
-    steps = sigmas.shape[0] - 1
-    if restart_list is None:
-        if steps >= 20:
-            restart_steps = 9
-            restart_times = 1
-            if steps >= 36:
-                restart_steps = steps // 4
-                restart_times = 2
-            sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2].item(), sigmas[0].item(), device=sigmas.device)
-            restart_list = {0.1: [restart_steps + 1, restart_times, 2]}
-        else:
-            restart_list = dict()
-    temp_list = dict()
-    for key, value in restart_list.items():
-        temp_list[int(torch.argmin(abs(sigmas - key), dim=0))] = value
-    restart_list = temp_list
-    step_list = []
-    for i in range(len(sigmas) - 1):
-        step_list.append((sigmas[i], sigmas[i + 1]))
-        if i + 1 in restart_list:
-            restart_steps, restart_times, restart_max = restart_list[i + 1]
-            min_idx = i + 1
-            max_idx = int(torch.argmin(abs(sigmas - restart_max), dim=0))
-            if max_idx < min_idx:
-                sigma_restart = get_sigmas_karras(restart_steps, sigmas[min_idx].item(), sigmas[max_idx].item(), device=sigmas.device)[:-1]
-                while restart_times > 0:
-                    restart_times -= 1
-                    step_list.extend([(old_sigma, new_sigma) for (old_sigma, new_sigma) in zip(sigma_restart[:-1], sigma_restart[1:])])
-    last_sigma = None
-    for i in trange(len(step_list), disable=disable):
-        if last_sigma is None:
-            last_sigma = step_list[i][0]
-        elif last_sigma < step_list[i][0]:
-            x = x + k_diffusion.sampling.torch.randn_like(x) * s_noise * (step_list[i][0] ** 2 - last_sigma ** 2) ** 0.5
-        x = heun_step(x, step_list[i][0], step_list[i][1])
-        last_sigma = step_list[i][1]
-    return x
-
 samplers_data_k_diffusion = [
     sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
     for label, funcname, aliases, options in samplers_k_diffusion
-    if (hasattr(k_diffusion.sampling, funcname) or funcname == 'restart_sampler')
+    if callable(funcname) or hasattr(k_diffusion.sampling, funcname)
 ]
 
 sampler_extra_params = {
@@ -339,7 +272,7 @@ class KDiffusionSampler:
 
         self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
         self.funcname = funcname
-        self.func = getattr(k_diffusion.sampling, self.funcname) if funcname != "restart_sampler" else restart_sampler
+        self.func = funcname if callable(funcname) else getattr(k_diffusion.sampling, self.funcname)
         self.extra_params = sampler_extra_params.get(funcname, [])
         self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
         self.sampler_noises = None