|
@@ -3,8 +3,31 @@ import open_clip
|
|
|
import torch
|
|
|
import transformers.utils.hub
|
|
|
|
|
|
+from modules import shared
|
|
|
|
|
|
-class DisableInitialization:
|
|
|
+
|
|
|
+class ReplaceHelper:
|
|
|
+ def __init__(self):
|
|
|
+ self.replaced = []
|
|
|
+
|
|
|
+ def replace(self, obj, field, func):
|
|
|
+ original = getattr(obj, field, None)
|
|
|
+ if original is None:
|
|
|
+ return None
|
|
|
+
|
|
|
+ self.replaced.append((obj, field, original))
|
|
|
+ setattr(obj, field, func)
|
|
|
+
|
|
|
+ return original
|
|
|
+
|
|
|
+ def restore(self):
|
|
|
+ for obj, field, original in self.replaced:
|
|
|
+ setattr(obj, field, original)
|
|
|
+
|
|
|
+ self.replaced.clear()
|
|
|
+
|
|
|
+
|
|
|
+class DisableInitialization(ReplaceHelper):
|
|
|
"""
|
|
|
When an object of this class enters a `with` block, it starts:
|
|
|
- preventing torch's layer initialization functions from working
|
|
@@ -21,7 +44,7 @@ class DisableInitialization:
|
|
|
"""
|
|
|
|
|
|
def __init__(self, disable_clip=True):
|
|
|
- self.replaced = []
|
|
|
+ super().__init__()
|
|
|
self.disable_clip = disable_clip
|
|
|
|
|
|
def replace(self, obj, field, func):
|
|
@@ -86,8 +109,81 @@ class DisableInitialization:
|
|
|
self.transformers_utils_hub_get_from_cache = self.replace(transformers.utils.hub, 'get_from_cache', transformers_utils_hub_get_from_cache)
|
|
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
|
- for obj, field, original in self.replaced:
|
|
|
- setattr(obj, field, original)
|
|
|
+ self.restore()
|
|
|
|
|
|
- self.replaced.clear()
|
|
|
|
|
|
+class InitializeOnMeta(ReplaceHelper):
|
|
|
+ """
|
|
|
+ Context manager that causes all parameters for linear/conv2d/mha layers to be allocated on meta device,
|
|
|
+ which results in those parameters having no values and taking no memory. model.to() will be broken and
|
|
|
+ will need to be repaired by using LoadStateDictOnMeta below when loading params from state dict.
|
|
|
+
|
|
|
+ Usage:
|
|
|
+ ```
|
|
|
+ with sd_disable_initialization.InitializeOnMeta():
|
|
|
+ sd_model = instantiate_from_config(sd_config.model)
|
|
|
+ ```
|
|
|
+ """
|
|
|
+
|
|
|
+ def __enter__(self):
|
|
|
+ if shared.cmd_opts.disable_model_loading_ram_optimization:
|
|
|
+ return
|
|
|
+
|
|
|
+ def set_device(x):
|
|
|
+ x["device"] = "meta"
|
|
|
+ return x
|
|
|
+
|
|
|
+ linear_init = self.replace(torch.nn.Linear, '__init__', lambda *args, **kwargs: linear_init(*args, **set_device(kwargs)))
|
|
|
+ conv2d_init = self.replace(torch.nn.Conv2d, '__init__', lambda *args, **kwargs: conv2d_init(*args, **set_device(kwargs)))
|
|
|
+ mha_init = self.replace(torch.nn.MultiheadAttention, '__init__', lambda *args, **kwargs: mha_init(*args, **set_device(kwargs)))
|
|
|
+ self.replace(torch.nn.Module, 'to', lambda *args, **kwargs: None)
|
|
|
+
|
|
|
+ def __exit__(self, exc_type, exc_val, exc_tb):
|
|
|
+ self.restore()
|
|
|
+
|
|
|
+
|
|
|
+class LoadStateDictOnMeta(ReplaceHelper):
|
|
|
+ """
|
|
|
+ Context manager that allows to read parameters from state_dict into a model that has some of its parameters in the meta device.
|
|
|
+ As those parameters are read from state_dict, they will be deleted from it, so by the end state_dict will be mostly empty, to save memory.
|
|
|
+ Meant to be used together with InitializeOnMeta above.
|
|
|
+
|
|
|
+ Usage:
|
|
|
+ ```
|
|
|
+ with sd_disable_initialization.LoadStateDictOnMeta(state_dict):
|
|
|
+ model.load_state_dict(state_dict, strict=False)
|
|
|
+ ```
|
|
|
+ """
|
|
|
+
|
|
|
+ def __init__(self, state_dict, device):
|
|
|
+ super().__init__()
|
|
|
+ self.state_dict = state_dict
|
|
|
+ self.device = device
|
|
|
+
|
|
|
+ def __enter__(self):
|
|
|
+ if shared.cmd_opts.disable_model_loading_ram_optimization:
|
|
|
+ return
|
|
|
+
|
|
|
+ sd = self.state_dict
|
|
|
+ device = self.device
|
|
|
+
|
|
|
+ def load_from_state_dict(original, self, state_dict, prefix, *args, **kwargs):
|
|
|
+ params = [(name, param) for name, param in self._parameters.items() if param is not None and param.is_meta]
|
|
|
+
|
|
|
+ for name, param in params:
|
|
|
+ if param.is_meta:
|
|
|
+ self._parameters[name] = torch.nn.parameter.Parameter(torch.zeros_like(param, device=device), requires_grad=param.requires_grad)
|
|
|
+
|
|
|
+ original(self, state_dict, prefix, *args, **kwargs)
|
|
|
+
|
|
|
+ for name, _ in params:
|
|
|
+ key = prefix + name
|
|
|
+ if key in sd:
|
|
|
+ del sd[key]
|
|
|
+
|
|
|
+ linear_load_from_state_dict = self.replace(torch.nn.Linear, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(linear_load_from_state_dict, *args, **kwargs))
|
|
|
+ conv2d_load_from_state_dict = self.replace(torch.nn.Conv2d, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(conv2d_load_from_state_dict, *args, **kwargs))
|
|
|
+ mha_load_from_state_dict = self.replace(torch.nn.MultiheadAttention, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(mha_load_from_state_dict, *args, **kwargs))
|
|
|
+
|
|
|
+ def __exit__(self, exc_type, exc_val, exc_tb):
|
|
|
+ self.restore()
|