|
@@ -0,0 +1,88 @@
|
|
|
+"""
|
|
|
+Tiny AutoEncoder for Stable Diffusion
|
|
|
+(DNN for encoding / decoding SD's latent space)
|
|
|
+
|
|
|
+https://github.com/madebyollin/taesd
|
|
|
+"""
|
|
|
+import os
|
|
|
+import torch
|
|
|
+import torch.nn as nn
|
|
|
+
|
|
|
+from modules import devices, paths_internal
|
|
|
+
|
|
|
+sd_vae_taesd = None
|
|
|
+
|
|
|
+
|
|
|
+def conv(n_in, n_out, **kwargs):
|
|
|
+ return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs)
|
|
|
+
|
|
|
+
|
|
|
+class Clamp(nn.Module):
|
|
|
+ @staticmethod
|
|
|
+ def forward(x):
|
|
|
+ return torch.tanh(x / 3) * 3
|
|
|
+
|
|
|
+
|
|
|
+class Block(nn.Module):
|
|
|
+ def __init__(self, n_in, n_out):
|
|
|
+ super().__init__()
|
|
|
+ self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out))
|
|
|
+ self.skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
|
|
|
+ self.fuse = nn.ReLU()
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ return self.fuse(self.conv(x) + self.skip(x))
|
|
|
+
|
|
|
+
|
|
|
+def decoder():
|
|
|
+ return nn.Sequential(
|
|
|
+ Clamp(), conv(4, 64), nn.ReLU(),
|
|
|
+ Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
|
|
|
+ Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
|
|
|
+ Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
|
|
|
+ Block(64, 64), conv(64, 3),
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+class TAESD(nn.Module):
|
|
|
+ latent_magnitude = 2
|
|
|
+ latent_shift = 0.5
|
|
|
+
|
|
|
+ def __init__(self, decoder_path="taesd_decoder.pth"):
|
|
|
+ """Initialize pretrained TAESD on the given device from the given checkpoints."""
|
|
|
+ super().__init__()
|
|
|
+ self.decoder = decoder()
|
|
|
+ self.decoder.load_state_dict(
|
|
|
+ torch.load(decoder_path, map_location='cpu' if devices.device.type != 'cuda' else None))
|
|
|
+
|
|
|
+ @staticmethod
|
|
|
+ def unscale_latents(x):
|
|
|
+ """[0, 1] -> raw latents"""
|
|
|
+ return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)
|
|
|
+
|
|
|
+
|
|
|
+def download_model(model_path):
|
|
|
+ model_url = 'https://github.com/madebyollin/taesd/raw/main/taesd_decoder.pth'
|
|
|
+
|
|
|
+ if not os.path.exists(model_path):
|
|
|
+ os.makedirs(os.path.dirname(model_path), exist_ok=True)
|
|
|
+
|
|
|
+ print(f'Downloading TAESD decoder to: {model_path}')
|
|
|
+ torch.hub.download_url_to_file(model_url, model_path)
|
|
|
+
|
|
|
+
|
|
|
+def model():
|
|
|
+ global sd_vae_taesd
|
|
|
+
|
|
|
+ if sd_vae_taesd is None:
|
|
|
+ model_path = os.path.join(paths_internal.models_path, "VAE-taesd", "taesd_decoder.pth")
|
|
|
+ download_model(model_path)
|
|
|
+
|
|
|
+ if os.path.exists(model_path):
|
|
|
+ sd_vae_taesd = TAESD(model_path)
|
|
|
+ sd_vae_taesd.eval()
|
|
|
+ sd_vae_taesd.to(devices.device, devices.dtype)
|
|
|
+ else:
|
|
|
+ raise FileNotFoundError('TAESD model not found')
|
|
|
+
|
|
|
+ return sd_vae_taesd.decoder
|