|
@@ -44,7 +44,17 @@ def decoder():
|
|
|
)
|
|
|
|
|
|
|
|
|
-class TAESD(nn.Module):
|
|
|
+def encoder():
|
|
|
+ return nn.Sequential(
|
|
|
+ conv(3, 64), Block(64, 64),
|
|
|
+ conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
|
|
|
+ conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
|
|
|
+ conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
|
|
|
+ conv(64, 4),
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+class TAESDDecoder(nn.Module):
|
|
|
latent_magnitude = 3
|
|
|
latent_shift = 0.5
|
|
|
|
|
@@ -55,21 +65,28 @@ class TAESD(nn.Module):
|
|
|
self.decoder.load_state_dict(
|
|
|
torch.load(decoder_path, map_location='cpu' if devices.device.type != 'cuda' else None))
|
|
|
|
|
|
- @staticmethod
|
|
|
- def unscale_latents(x):
|
|
|
- """[0, 1] -> raw latents"""
|
|
|
- return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)
|
|
|
+
|
|
|
+class TAESDEncoder(nn.Module):
|
|
|
+ latent_magnitude = 3
|
|
|
+ latent_shift = 0.5
|
|
|
+
|
|
|
+ def __init__(self, encoder_path="taesd_encoder.pth"):
|
|
|
+ """Initialize pretrained TAESD on the given device from the given checkpoints."""
|
|
|
+ super().__init__()
|
|
|
+ self.encoder = encoder()
|
|
|
+ self.encoder.load_state_dict(
|
|
|
+ torch.load(encoder_path, map_location='cpu' if devices.device.type != 'cuda' else None))
|
|
|
|
|
|
|
|
|
def download_model(model_path, model_url):
|
|
|
if not os.path.exists(model_path):
|
|
|
os.makedirs(os.path.dirname(model_path), exist_ok=True)
|
|
|
|
|
|
- print(f'Downloading TAESD decoder to: {model_path}')
|
|
|
+ print(f'Downloading TAESD model to: {model_path}')
|
|
|
torch.hub.download_url_to_file(model_url, model_path)
|
|
|
|
|
|
|
|
|
-def model():
|
|
|
+def decoder_model():
|
|
|
model_name = "taesdxl_decoder.pth" if getattr(shared.sd_model, 'is_sdxl', False) else "taesd_decoder.pth"
|
|
|
loaded_model = sd_vae_taesd_models.get(model_name)
|
|
|
|
|
@@ -78,7 +95,7 @@ def model():
|
|
|
download_model(model_path, 'https://github.com/madebyollin/taesd/raw/main/' + model_name)
|
|
|
|
|
|
if os.path.exists(model_path):
|
|
|
- loaded_model = TAESD(model_path)
|
|
|
+ loaded_model = TAESDDecoder(model_path)
|
|
|
loaded_model.eval()
|
|
|
loaded_model.to(devices.device, devices.dtype)
|
|
|
sd_vae_taesd_models[model_name] = loaded_model
|
|
@@ -86,3 +103,22 @@ def model():
|
|
|
raise FileNotFoundError('TAESD model not found')
|
|
|
|
|
|
return loaded_model.decoder
|
|
|
+
|
|
|
+
|
|
|
+def encoder_model():
|
|
|
+ model_name = "taesdxl_encoder.pth" if getattr(shared.sd_model, 'is_sdxl', False) else "taesd_encoder.pth"
|
|
|
+ loaded_model = sd_vae_taesd_models.get(model_name)
|
|
|
+
|
|
|
+ if loaded_model is None:
|
|
|
+ model_path = os.path.join(paths_internal.models_path, "VAE-taesd", model_name)
|
|
|
+ download_model(model_path, 'https://github.com/madebyollin/taesd/raw/main/' + model_name)
|
|
|
+
|
|
|
+ if os.path.exists(model_path):
|
|
|
+ loaded_model = TAESDEncoder(model_path)
|
|
|
+ loaded_model.eval()
|
|
|
+ loaded_model.to(devices.device, devices.dtype)
|
|
|
+ sd_vae_taesd_models[model_name] = loaded_model
|
|
|
+ else:
|
|
|
+ raise FileNotFoundError('TAESD model not found')
|
|
|
+
|
|
|
+ return loaded_model.encoder
|