- networks_on_disk = [available_network_aliases.get(name, None) for name in names]
+ networks_on_disk = [available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None) for name in names]
if any(x is None for x in networks_on_disk):
if any(x is None for x in networks_on_disk):
list_available_networks()
list_available_networks()
- networks_on_disk = [available_network_aliases.get(name, None) for name in names]
+ networks_on_disk = [available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None) for name in names]
"lora_show_all": shared.OptionInfo(False, "Always show all networks on the Lora page").info("otherwise, those detected as for incompatible version of Stable Diffusion will be hidden"),
"lora_show_all": shared.OptionInfo(False, "Always show all networks on the Lora page").info("otherwise, those detected as for incompatible version of Stable Diffusion will be hidden"),
"lora_hide_unknown_for_versions": shared.OptionInfo([], "Hide networks of unknown versions for model versions", gr.CheckboxGroup, {"choices": ["SD1", "SD2", "SDXL"]}),
"lora_hide_unknown_for_versions": shared.OptionInfo([], "Hide networks of unknown versions for model versions", gr.CheckboxGroup, {"choices": ["SD1", "SD2", "SDXL"]}),
"lora_in_memory_limit": shared.OptionInfo(0, "Number of Lora networks to keep cached in memory", gr.Number, {"precision": 0}),
"lora_in_memory_limit": shared.OptionInfo(0, "Number of Lora networks to keep cached in memory", gr.Number, {"precision": 0}),
+ "lora_not_found_warning_console": shared.OptionInfo(False, "Lora not found warning in console"),
+ "lora_not_found_gradio_warning": shared.OptionInfo(False, "Lora not found warning popup in webui"),
"canvas_hotkey_zoom": shared.OptionInfo("Alt", "Zoom canvas", gr.Radio, {"choices": ["Shift","Ctrl", "Alt"]}).info("If you choose 'Shift' you cannot scroll horizontally, 'Alt' can cause a little trouble in firefox"),
"canvas_hotkey_zoom": shared.OptionInfo("Alt", "Zoom canvas", gr.Radio, {"choices": ["Shift","Ctrl", "Alt"]}).info("If you choose 'Shift' you cannot scroll horizontally, 'Alt' can cause a little trouble in firefox"),
"canvas_hotkey_adjust": shared.OptionInfo("Ctrl", "Adjust brush size", gr.Radio, {"choices": ["Shift","Ctrl", "Alt"]}).info("If you choose 'Shift' you cannot scroll horizontally, 'Alt' can cause a little trouble in firefox"),
"canvas_hotkey_adjust": shared.OptionInfo("Ctrl", "Adjust brush size", gr.Radio, {"choices": ["Shift","Ctrl", "Alt"]}).info("If you choose 'Shift' you cannot scroll horizontally, 'Alt' can cause a little trouble in firefox"),
+ "canvas_hotkey_shrink_brush": shared.OptionInfo("Q", "Shrink the brush size"),
+ "canvas_hotkey_grow_brush": shared.OptionInfo("W", "Enlarge the brush size"),
"canvas_hotkey_move": shared.OptionInfo("F", "Moving the canvas").info("To work correctly in firefox, turn off 'Automatically search the page text when typing' in the browser settings"),
"canvas_hotkey_move": shared.OptionInfo("F", "Moving the canvas").info("To work correctly in firefox, turn off 'Automatically search the page text when typing' in the browser settings"),
"canvas_hotkey_fullscreen": shared.OptionInfo("S", "Fullscreen Mode, maximizes the picture so that it fits into the screen and stretches it to its full width "),
"canvas_hotkey_fullscreen": shared.OptionInfo("S", "Fullscreen Mode, maximizes the picture so that it fits into the screen and stretches it to its full width "),
"canvas_hotkey_reset": shared.OptionInfo("R", "Reset zoom and canvas positon"),
"canvas_hotkey_reset": shared.OptionInfo("R", "Reset zoom and canvas positon"),
"canvas_show_tooltip": shared.OptionInfo(True, "Enable tooltip on the canvas"),
"canvas_show_tooltip": shared.OptionInfo(True, "Enable tooltip on the canvas"),
"canvas_auto_expand": shared.OptionInfo(True, "Automatically expands an image that does not fit completely in the canvas area, similar to manually pressing the S and R buttons"),
"canvas_auto_expand": shared.OptionInfo(True, "Automatically expands an image that does not fit completely in the canvas area, similar to manually pressing the S and R buttons"),
"canvas_blur_prompt": shared.OptionInfo(False, "Take the focus off the prompt when working with a canvas"),
"canvas_blur_prompt": shared.OptionInfo(False, "Take the focus off the prompt when working with a canvas"),
- "canvas_disabled_functions": shared.OptionInfo(["Overlap"], "Disable function that you don't use", gr.CheckboxGroup, {"choices": ["Zoom","Adjust brush size", "Moving canvas","Fullscreen","Reset Zoom","Overlap"]}),
+ "canvas_disabled_functions": shared.OptionInfo(["Overlap"], "Disable function that you don't use", gr.CheckboxGroup, {"choices": ["Zoom","Adjust brush size","Hotkeyenlarge brush","Hotkey shrink brush","Moving canvas","Fullscreen","Reset Zoom","Overlap"]}),
@@ -25,7 +25,7 @@ class ExtraOptionsSection(scripts.Script):
extra_options = shared.opts.extra_options_img2img if is_img2img else shared.opts.extra_options_txt2img
extra_options = shared.opts.extra_options_img2img if is_img2img else shared.opts.extra_options_txt2img
elem_id_tabname = "extra_options_" + ("img2img" if is_img2img else "txt2img")
elem_id_tabname = "extra_options_" + ("img2img" if is_img2img else "txt2img")
- mapping = {k: v for v, k in generation_parameters_copypaste.infotext_to_setting_name_mapping}
+ mapping = {k: v for v, k in infotext_utils.infotext_to_setting_name_mapping}
with gr.Blocks() as interface:
with gr.Blocks() as interface:
with gr.Accordion("Options", open=False, elem_id=elem_id_tabname) if shared.opts.extra_options_accordion and extra_options else gr.Group(elem_id=elem_id_tabname):
with gr.Accordion("Options", open=False, elem_id=elem_id_tabname) if shared.opts.extra_options_accordion and extra_options else gr.Group(elem_id=elem_id_tabname):
<small>The sub-quadratic cross attention optimization uses modified code from the Memory Efficient Attention package that Alex Birch optimized for 3D tensors. This license is updated to reflect that.</small>
<small>The sub-quadratic cross attention optimization uses modified code from the Memory Efficient Attention package that Alex Birch optimized for 3D tensors. This license is updated to reflect that.</small>
<pre>
<pre>
@@ -687,4 +379,4 @@ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-function extraNetworksTabSelected(tabname, id, showPrompt, showNegativePrompt) { // called from python when user selects an extra networks tab
+function extraNetworksTabSelected(tabname, id, showPrompt, showNegativePrompt, tabname_full) { // called from python when user selects an extra networks tab
+ set_fields = request.model_dump(exclude_unset=True) if hasattr(request, "request") else request.dict(exclude_unset=True) # pydantic v1/v2 have differenrt names for this
+parser.add_argument("--freeze-settings", action='store_true', help="disable editing of all settings globally", default=False)
+parser.add_argument("--freeze-settings-in-sections", type=str, help='disable editing settings in specific sections of the settings page by specifying a comma-delimited list such like "saving-images,upscaling". The list of setting names can be found in the modules/shared_options.py file', default=None)
+parser.add_argument("--freeze-specific-settings", type=str, help='disable editing of individual settings by specifying a comma-delimited list like "samples_save,samples_format". The list of setting names can be found in the config.json file', default=None)
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(data_path, 'config.json'))
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(data_path, 'config.json'))
parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option")
parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option")
parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
@@ -86,7 +88,7 @@ parser.add_argument("--gradio-img2img-tool", type=str, help='does not do anythin
parser.add_argument("--gradio-inpaint-tool", type=str, help="does not do anything")
parser.add_argument("--gradio-inpaint-tool", type=str, help="does not do anything")
parser.add_argument("--gradio-allowed-path", action='append', help="add path to gradio's allowed_paths, make it possible to serve files from it", default=[data_path])
parser.add_argument("--gradio-allowed-path", action='append', help="add path to gradio's allowed_paths, make it possible to serve files from it", default=[data_path])
parser.add_argument("--opt-channelslast", action='store_true', help="change memory type for stable diffusion to channels last")
parser.add_argument("--opt-channelslast", action='store_true', help="change memory type for stable diffusion to channels last")
-parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(data_path, 'styles.csv'))
+parser.add_argument("--styles-file", type=str, action='append', help="path or wildcard path of styles files, allow multiple entries.", default=[])
parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False)
parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False)
parser.add_argument("--theme", type=str, help="launches the UI with light or dark theme", default=None)
parser.add_argument("--theme", type=str, help="launches the UI with light or dark theme", default=None)
parser.add_argument("--use-textbox-seed", action='store_true', help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False)
parser.add_argument("--use-textbox-seed", action='store_true', help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False)
+ and torch.cuda.get_device_name(device_id).startswith("NVIDIA GeForce GTX 16")
+ )
+
+
+def get_cuda_device_id():
+ return (
+ int(shared.cmd_opts.device_id)
+ if shared.cmd_opts.device_id is not None and shared.cmd_opts.device_id.isdigit()
+ else 0
+ ) or torch.cuda.current_device()
+
+
def get_cuda_device_string():
def get_cuda_device_string():
if shared.cmd_opts.device_id is not None:
if shared.cmd_opts.device_id is not None:
return f"cuda:{shared.cmd_opts.device_id}"
return f"cuda:{shared.cmd_opts.device_id}"
@@ -79,8 +96,7 @@ def enable_tf32():
# enabling benchmark option seems to enable a range of cards to do fp16 when they otherwise can't
# enabling benchmark option seems to enable a range of cards to do fp16 when they otherwise can't
# see https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/4407
# see https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/4407
- device_id = (int(shared.cmd_opts.device_id) if shared.cmd_opts.device_id is not None and shared.cmd_opts.device_id.isdigit() else 0) or torch.cuda.current_device()
- if torch.cuda.get_device_capability(device_id) == (7, 5) and torch.cuda.get_device_name(device_id).startswith("NVIDIA GeForce GTX 16"):
- p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None
- padding = padding if pad_type == 'zero' else 0
-
- if convtype=='PartialConv2D':
- from torchvision.ops import PartialConv2d # this is definitely not going to work, but PartialConv2d doesn't work anyway and this shuts up static analyzer
- c = PartialConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
- dilation=dilation, bias=bias, groups=groups)
- elif convtype=='DeformConv2D':
- from torchvision.ops import DeformConv2d # not tested
- c = DeformConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
- dilation=dilation, bias=bias, groups=groups)
- elif convtype=='Conv3D':
- c = nn.Conv3d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
- dilation=dilation, bias=bias, groups=groups)
- else:
- c = nn.Conv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
- dilation=dilation, bias=bias, groups=groups)
-
- if spectral_norm:
- c = nn.utils.spectral_norm(c)
-
- a = act(act_type) if act_type else None
- if 'CNA' in mode:
- n = norm(norm_type, out_nc) if norm_type else None
- return sequential(p, c, n, a)
- elif mode == 'NAC':
- if norm_type is None and act_type is not None:
- a = act(act_type, inplace=False)
- n = norm(norm_type, in_nc) if norm_type else None
"""parses generation parameters string, the one you see in text field under the picture in UI:
"""parses generation parameters string, the one you see in text field under the picture in UI:
```
```
girl with an artist's beret, determined, blue eyes, desert scene, computer monitors, heavy makeup, by Alphonse Mucha and Charlie Bowater, ((eyeshadow)), (coquettish), detailed, intricate
girl with an artist's beret, determined, blue eyes, desert scene, computer monitors, heavy makeup, by Alphonse Mucha and Charlie Bowater, ((eyeshadow)), (coquettish), detailed, intricate
@@ -218,6 +240,8 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
returns a dict with field values
returns a dict with field values
"""
"""
+ if skip_fields is None:
+ skip_fields = shared.opts.infotext_skip_pasting
res = {}
res = {}
@@ -290,6 +314,18 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
if "Hires negative prompt" not in res:
if "Hires negative prompt" not in res:
res["Hires negative prompt"] = ""
res["Hires negative prompt"] = ""
+ if "Mask mode" not in res:
+ res["Mask mode"] = "Inpaint masked"
+
+ if "Masked content" not in res:
+ res["Masked content"] = 'original'
+
+ if "Inpaint area" not in res:
+ res["Inpaint area"] = "Whole picture"
+
+ if "Masked area padding" not in res:
+ res["Masked area padding"] = 32
+
restore_old_hires_fix_params(res)
restore_old_hires_fix_params(res)
# Missing RNG means the default was set, which is GPU RNG
# Missing RNG means the default was set, which is GPU RNG
@@ -314,8 +350,16 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
if "VAE Decoder" not in res:
if "VAE Decoder" not in res:
res["VAE Decoder"] = "Full"
res["VAE Decoder"] = "Full"
- skip = set(shared.opts.infotext_skip_pasting)
- res = {k: v for k, v in res.items() if k not in skip}
+ if "FP8 weight" not in res:
+ res["FP8 weight"] = "Disable"
+
+ if "Cache FP16 weight for LoRA" not in res and res["FP8 weight"] != "Disable":
- with open(settings_file, "r", encoding="utf8") as file:
- settings = json.load(file)
+ with open(settings_file, "r", encoding="utf8") as file:
+ settings = json.load(file)
+ except FileNotFoundError:
+ pass
except Exception:
except Exception:
- errors.report("Could not load settings", exc_info=True)
+ errors.report(f'\nCould not load settings\nThe config file "{settings_file}" is likely corrupted\nIt has been moved to the "tmp/config.json"\nReverting config to default\n\n''', exc_info=True)
# The "Nuullll/intel-extension-for-pytorch" wheels were built from IPEX source for Intel Arc GPU: https://github.com/intel/intel-extension-for-pytorch/tree/xpu-main
# The "Nuullll/intel-extension-for-pytorch" wheels were built from IPEX source for Intel Arc GPU: https://github.com/intel/intel-extension-for-pytorch/tree/xpu-main
assert not cmd_opts.freeze_settings, "changing settings is disabled"
assert not cmd_opts.freeze_settings, "changing settings is disabled"
+ # Get the info related to the setting being changed
info = self.data_labels.get(key, None)
info = self.data_labels.get(key, None)
if info.do_not_save:
if info.do_not_save:
return
return
+ # Restrict component arguments
comp_args = info.component_args if info else None
comp_args = info.component_args if info else None
if isinstance(comp_args, dict) and comp_args.get('visible', True) is False:
if isinstance(comp_args, dict) and comp_args.get('visible', True) is False:
- raise RuntimeError(f"not possible to set {key} because it is restricted")
+ raise RuntimeError(f"not possible to set '{key}' because it is restricted")
+
+ # Check that this section isn't frozen
+ if cmd_opts.freeze_settings_in_sections is not None:
+ frozen_sections = list(map(str.strip, cmd_opts.freeze_settings_in_sections.split(','))) # Trim whitespace from section names
+ section_key = info.section[0]
+ section_name = info.section[1]
+ assert section_key not in frozen_sections, f"not possible to set '{key}' because settings in section '{section_name}' ({section_key}) are frozen with --freeze-settings-in-sections"
+
+ # Check that this section of the settings isn't frozen
+ if cmd_opts.freeze_specific_settings is not None:
+ frozen_keys = list(map(str.strip, cmd_opts.freeze_specific_settings.split(','))) # Trim whitespace from setting keys
+ assert key not in frozen_keys, f"not possible to set '{key}' because this setting is frozen with --freeze-specific-settings"
+ # Check shorthand option which disables editing options in "saving-paths"
if cmd_opts.hide_ui_dir_config and key in self.restricted_opts:
if cmd_opts.hide_ui_dir_config and key in self.restricted_opts:
- raise RuntimeError(f"not possible to set {key} because it is restricted")
+ raise RuntimeError(f"not possible to set '{key}' because it is restricted with --hide_ui_dir_config")
self.data[key] = value
self.data[key] = value
return
return
@@ -176,9 +195,15 @@ class Options:
return type_x == type_y
return type_x == type_y
def load(self, filename):
def load(self, filename):
- with open(filename, "r", encoding="utf8") as file:
- self.data = json.load(file)
-
+ try:
+ with open(filename, "r", encoding="utf8") as file:
+ self.data = json.load(file)
+ except FileNotFoundError:
+ self.data = {}
+ except Exception:
+ errors.report(f'\nCould not load settings\nThe config file "{filename}" is likely corrupted\nIt has been moved to the "tmp/config.json"\nReverting config to default\n\n''', exc_info=True)
"User": p.user if opts.add_user_name_to_info else None,
"User": p.user if opts.add_user_name_to_info else None,
}
}
- generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
+ generation_params_text = ", ".join([k if k == v else f'{k}: {infotext_utils.quote(v)}' for k, v in generation_params.items() if v is not None])
prompt_text = p.main_prompt if use_main_prompt else all_prompts[index]
prompt_text = p.main_prompt if use_main_prompt else all_prompts[index]
negative_prompt_text = f"\nNegative prompt: {p.main_negative_prompt if use_main_prompt else all_negative_prompts[index]}" if all_negative_prompts[index] else ""
negative_prompt_text = f"\nNegative prompt: {p.main_negative_prompt if use_main_prompt else all_negative_prompts[index]}" if all_negative_prompts[index] else ""
@@ -105,8 +165,21 @@ class CFGDenoiser(torch.nn.Module):
assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"
assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"
+ # If we use masks, blending between the denoised and original latent images occurs here.
+ mba = scripts.MaskBlendArgs(current_latent, self.nmask, self.init_latent, self.mask, blended_latent, denoiser=self, sigma=sigma)
+ self.p.scripts.on_mask_blend(self.p, mba)
+ blended_latent = mba.blended_latent
+
+ return blended_latent
+
+ # Blend in the original latents (before)
if self.mask_before_denoising and self.mask is not None:
if self.mask_before_denoising and self.mask is not None:
- x = self.init_latent * self.mask + self.nmask * x
+ x = apply_blend(x)
batch_size = len(conds_list)
batch_size = len(conds_list)
repeats = [len(conds_list[i]) for i in range(batch_size)]
repeats = [len(conds_list[i]) for i in range(batch_size)]
@@ -130,7 +203,7 @@ class CFGDenoiser(torch.nn.Module):
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma])
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma])
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)])
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)])
self.sampler.last_latent = self.get_pred_x0(torch.cat([x_in[i:i + 1] for i in denoised_image_indexes]), torch.cat([x_out[i:i + 1] for i in denoised_image_indexes]), sigma)
self.sampler.last_latent = self.get_pred_x0(torch.cat([x_in[i:i + 1] for i in denoised_image_indexes]), torch.cat([x_out[i:i + 1] for i in denoised_image_indexes]), sigma)
options_templates.update(options_section(('saving-paths', "Paths for saving", "saving"), {
options_templates.update(options_section(('saving-paths', "Paths for saving", "saving"), {
"outdir_samples": OptionInfo("", "Output directory for images; if empty, defaults to three directories below", component_args=hide_dirs),
"outdir_samples": OptionInfo("", "Output directory for images; if empty, defaults to three directories below", component_args=hide_dirs),
- "outdir_txt2img_samples": OptionInfo("outputs/txt2img-images", 'Output directory for txt2img images', component_args=hide_dirs),
- "outdir_img2img_samples": OptionInfo("outputs/img2img-images", 'Output directory for img2img images', component_args=hide_dirs),
- "outdir_extras_samples": OptionInfo("outputs/extras-images", 'Output directory for images from extras tab', component_args=hide_dirs),
+ "outdir_txt2img_samples": OptionInfo(util.truncate_path(os.path.join(default_output_dir, 'txt2img-images')), 'Output directory for txt2img images', component_args=hide_dirs),
+ "outdir_img2img_samples": OptionInfo(util.truncate_path(os.path.join(default_output_dir, 'img2img-images')), 'Output directory for img2img images', component_args=hide_dirs),
+ "outdir_extras_samples": OptionInfo(util.truncate_path(os.path.join(default_output_dir, 'extras-images')), 'Output directory for images from extras tab', component_args=hide_dirs),
"outdir_grids": OptionInfo("", "Output directory for grids; if empty, defaults to two directories below", component_args=hide_dirs),
"outdir_grids": OptionInfo("", "Output directory for grids; if empty, defaults to two directories below", component_args=hide_dirs),
- "outdir_txt2img_grids": OptionInfo("outputs/txt2img-grids", 'Output directory for txt2img grids', component_args=hide_dirs),
- "outdir_img2img_grids": OptionInfo("outputs/img2img-grids", 'Output directory for img2img grids', component_args=hide_dirs),
- "outdir_save": OptionInfo("log/images", "Directory for saving images using the Save button", component_args=hide_dirs),
- "outdir_init_images": OptionInfo("outputs/init-images", "Directory for saving init images when using img2img", component_args=hide_dirs),
+ "outdir_txt2img_grids": OptionInfo(util.truncate_path(os.path.join(default_output_dir, 'txt2img-grids')), 'Output directory for txt2img grids', component_args=hide_dirs),
+ "outdir_img2img_grids": OptionInfo(util.truncate_path(os.path.join(default_output_dir, 'img2img-grids')), 'Output directory for img2img grids', component_args=hide_dirs),
+ "outdir_save": OptionInfo(util.truncate_path(os.path.join(data_path, 'log', 'images')), "Directory for saving images using the Save button", component_args=hide_dirs),
+ "outdir_init_images": OptionInfo(util.truncate_path(os.path.join(default_output_dir, 'init-images')), "Directory for saving init images when using img2img", component_args=hide_dirs),
}))
}))
options_templates.update(options_section(('saving-to-dirs', "Saving to a directory", "saving"), {
options_templates.update(options_section(('saving-to-dirs', "Saving to a directory", "saving"), {
"realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI.", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}),
"realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI.", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}),
+ "dat_enabled_models": OptionInfo(["DAT x2", "DAT x3", "DAT x4"], "Select which DAT models to show in the web UI.", gr.CheckboxGroup, lambda: {"choices": shared_items.dat_models_names()}),
+ "DAT_tile": OptionInfo(192, "Tile size for DAT upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}).info("0 = no tiling"),
+ "DAT_tile_overlap": OptionInfo(8, "Tile overlap for DAT upscalers.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}).info("Low values = visible seam"),
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in shared.sd_upscalers]}),
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in shared.sd_upscalers]}),
"memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}).info("0 = disable"),
"memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}).info("0 = disable"),
"samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"),
"samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"),
"multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."),
"multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."),
+ "enable_upscale_progressbar": OptionInfo(True, "Show a progress bar in the console for tiled upscaling."),
"print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."),
"print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."),
"list_hidden_files": OptionInfo(True, "Load models/files in hidden directories").info("directory is hidden if its name starts with \".\""),
"list_hidden_files": OptionInfo(True, "Load models/files in hidden directories").info("directory is hidden if its name starts with \".\""),
"disable_mmap_load_safetensors": OptionInfo(False, "Disable memmapping for loading .safetensors files.").info("fixes very slow loading speed in some cases"),
"disable_mmap_load_safetensors": OptionInfo(False, "Disable memmapping for loading .safetensors files.").info("fixes very slow loading speed in some cases"),
@@ -176,6 +181,7 @@ For img2img, VAE is used to process user's input image before the sampling, and
"sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
"sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
"sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list, infotext='VAE').info("choose VAE model: Automatic = use one with same filename as checkpoint; None = use VAE from checkpoint"),
"sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list, infotext='VAE').info("choose VAE model: Automatic = use one with same filename as checkpoint; None = use VAE from checkpoint"),
"sd_vae_overrides_per_model_preferences": OptionInfo(True, "Selected VAE overrides per-model preferences").info("you can set per-model VAE either by editing user metadata for checkpoints, or by making the VAE have same name as checkpoint"),
"sd_vae_overrides_per_model_preferences": OptionInfo(True, "Selected VAE overrides per-model preferences").info("you can set per-model VAE either by editing user metadata for checkpoints, or by making the VAE have same name as checkpoint"),
+ "auto_vae_precision_bfloat16": OptionInfo(False, "Automatically convert VAE to bfloat16").info("triggers when a tensor with NaNs is produced in VAE; disabling the option in this case will result in a black square image; if enabled, overrides the option below"),
"auto_vae_precision": OptionInfo(True, "Automatically revert VAE to 32-bit floats").info("triggers when a tensor with NaNs is produced in VAE; disabling the option in this case will result in a black square image"),
"auto_vae_precision": OptionInfo(True, "Automatically revert VAE to 32-bit floats").info("triggers when a tensor with NaNs is produced in VAE; disabling the option in this case will result in a black square image"),
"sd_vae_encode_method": OptionInfo("Full", "VAE type for encode", gr.Radio, {"choices": ["Full", "TAESD"]}, infotext='VAE Encoder').info("method to encode image to latent (use in img2img, hires-fix or inpaint mask)"),
"sd_vae_encode_method": OptionInfo("Full", "VAE type for encode", gr.Radio, {"choices": ["Full", "TAESD"]}, infotext='VAE Encoder').info("method to encode image to latent (use in img2img, hires-fix or inpaint mask)"),
"sd_vae_decode_method": OptionInfo("Full", "VAE type for decode", gr.Radio, {"choices": ["Full", "TAESD"]}, infotext='VAE Decoder').info("method to decode latent to image"),
"sd_vae_decode_method": OptionInfo("Full", "VAE type for decode", gr.Radio, {"choices": ["Full", "TAESD"]}, infotext='VAE Decoder').info("method to decode latent to image"),
"return_mask": OptionInfo(False, "For inpainting, include the greyscale mask in results for web"),
"return_mask": OptionInfo(False, "For inpainting, include the greyscale mask in results for web"),
"return_mask_composite": OptionInfo(False, "For inpainting, include masked composite in results for web"),
"return_mask_composite": OptionInfo(False, "For inpainting, include masked composite in results for web"),
"img2img_batch_show_results_limit": OptionInfo(32, "Show the first N batch img2img results in UI", gr.Slider, {"minimum": -1, "maximum": 1000, "step": 1}).info('0: disable, -1: show all images. Too many images can cause lag'),
"img2img_batch_show_results_limit": OptionInfo(32, "Show the first N batch img2img results in UI", gr.Slider, {"minimum": -1, "maximum": 1000, "step": 1}).info('0: disable, -1: show all images. Too many images can cause lag'),
+ "overlay_inpaint": OptionInfo(True, "Overlay original for inpaint").info("when inpainting, overlay the original image over the areas that weren't inpainted."),
"token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
"token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
"token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}, infotext='Token merging ratio hr').info("only applies if non-zero and overrides above"),
"token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}, infotext='Token merging ratio hr').info("only applies if non-zero and overrides above"),
- "pad_cond_uncond": OptionInfo(False, "Pad prompt/negative prompt to be same length", infotext='Pad conds').info("improves performance when prompt and negative prompt have different lengths; changes seeds"),
+ "pad_cond_uncond": OptionInfo(False, "Pad prompt/negative prompt", infotext='Pad conds').info("improves performance when prompt and negative prompt have different lengths; changes seeds"),
+ "pad_cond_uncond_v0": OptionInfo(False, "Pad prompt/negative prompt (v0)", infotext='Pad conds v0').info("alternative implementation for the above; used prior to 1.6.0 for DDIM sampler; ignored if the above is set; changes seeds"),
"persistent_cond_cache": OptionInfo(True, "Persistent cond cache").info("do not recalculate conds from prompts if prompts have not changed since previous calculation"),
"persistent_cond_cache": OptionInfo(True, "Persistent cond cache").info("do not recalculate conds from prompts if prompts have not changed since previous calculation"),
"batch_cond_uncond": OptionInfo(True, "Batch cond/uncond").info("do both conditional and unconditional denoising in one batch; uses a bit more VRAM during sampling, but improves speed; previously this was controlled by --always-batch-cond-uncond comandline argument"),
"batch_cond_uncond": OptionInfo(True, "Batch cond/uncond").info("do both conditional and unconditional denoising in one batch; uses a bit more VRAM during sampling, but improves speed; previously this was controlled by --always-batch-cond-uncond comandline argument"),
+ "fp8_storage": OptionInfo("Disable", "FP8 weight", gr.Radio, {"choices": ["Disable", "Enable for SDXL", "Enable"]}).info("Use FP8 to store Linear/Conv layers' weight. Require pytorch>=2.1.0."),
+ "cache_fp16_weight": OptionInfo(False, "Cache FP16 weight for LoRA").info("Cache fp16 weight when enabling FP8, will increase the quality of LoRA. Use more system ram."),
+ "auto_backcompat": OptionInfo(True, "Automatic backward compatibility").info("automatically enable options for backwards compatibility when importing generation parameters from infotext that has program version."),
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
"use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
"use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
"no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."),
"no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."),
"dont_fix_second_order_samplers_schedule": OptionInfo(False, "Do not fix prompt schedule for second order samplers."),
"dont_fix_second_order_samplers_schedule": OptionInfo(False, "Do not fix prompt schedule for second order samplers."),
"hires_fix_use_firstpass_conds": OptionInfo(False, "For hires fix, calculate conds of second pass using extra networks of first pass."),
"hires_fix_use_firstpass_conds": OptionInfo(False, "For hires fix, calculate conds of second pass using extra networks of first pass."),
"use_old_scheduling": OptionInfo(False, "Use old prompt editing timelines.", infotext="Old prompt editing timelines").info("For [red:green:N]; old: If N < 1, it's a fraction of steps (and hires fix uses range from 0 to 1), if N >= 1, it's an absolute number of steps; new: If N has a decimal point in it, it's a fraction of steps (and hires fix uses range from 1 to 2), othewrwise it's an absolute number of steps"),
"use_old_scheduling": OptionInfo(False, "Use old prompt editing timelines.", infotext="Old prompt editing timelines").info("For [red:green:N]; old: If N < 1, it's a fraction of steps (and hires fix uses range from 0 to 1), if N >= 1, it's an absolute number of steps; new: If N has a decimal point in it, it's a fraction of steps (and hires fix uses range from 1 to 2), othewrwise it's an absolute number of steps"),
+ "use_downcasted_alpha_bar": OptionInfo(False, "Downcast model alphas_cumprod to fp16 before sampling. For reproducing old seeds.", infotext="Downcast alphas_cumprod")
"extra_networks_card_show_desc": OptionInfo(True, "Show description on card"),
"extra_networks_card_show_desc": OptionInfo(True, "Show description on card"),
"extra_networks_card_order_field": OptionInfo("Path", "Default order field for Extra Networks cards", gr.Dropdown, {"choices": ['Path', 'Name', 'Date Created', 'Date Modified']}).needs_reload_ui(),
"extra_networks_card_order_field": OptionInfo("Path", "Default order field for Extra Networks cards", gr.Dropdown, {"choices": ['Path', 'Name', 'Date Created', 'Date Modified']}).needs_reload_ui(),
"extra_networks_card_order": OptionInfo("Ascending", "Default order for Extra Networks cards", gr.Dropdown, {"choices": ['Ascending', 'Descending']}).needs_reload_ui(),
"extra_networks_card_order": OptionInfo("Ascending", "Default order for Extra Networks cards", gr.Dropdown, {"choices": ['Ascending', 'Descending']}).needs_reload_ui(),
+ "extra_networks_tree_view_default_enabled": OptionInfo(False, "Enables the Extra Networks directory tree view by default").needs_reload_ui(),
"extra_networks_add_text_separator": OptionInfo(" ", "Extra networks separator").info("extra text to add before <...> when adding extra network to prompt"),
"extra_networks_add_text_separator": OptionInfo(" ", "Extra networks separator").info("extra text to add before <...> when adding extra network to prompt"),
"hires_fix_show_prompts": OptionInfo(False, "Hires fix: show hires prompt and negative prompt").needs_reload_ui(),
"hires_fix_show_prompts": OptionInfo(False, "Hires fix: show hires prompt and negative prompt").needs_reload_ui(),
"txt2img_settings_accordion": OptionInfo(False, "Settings in txt2img hidden under Accordion").needs_reload_ui(),
"txt2img_settings_accordion": OptionInfo(False, "Settings in txt2img hidden under Accordion").needs_reload_ui(),
"img2img_settings_accordion": OptionInfo(False, "Settings in img2img hidden under Accordion").needs_reload_ui(),
"img2img_settings_accordion": OptionInfo(False, "Settings in img2img hidden under Accordion").needs_reload_ui(),
+ "interrupt_after_current": OptionInfo(True, "Don't Interrupt in the middle").info("when using Interrupt button, if generating more than one image, stop after the generation of an image has finished, instead of immediately"),
+ """This function extracts the text from a given prompt based on a provided style text. It checks if the style text contains the placeholder {prompt} or if it appears at the end of the prompt. If a match is found, it returns True along with the extracted text. Otherwise, it returns False and the original prompt.
- Note that the "cleaned" version of the style text is only used for matching
- purposes here. It isn't returned; the original style text is not modified.
+ extract_style_text_from_prompt("masterpiece", "1girl, art by greg, masterpiece") outputs (True, "1girl, art by greg")
+ extract_style_text_from_prompt("masterpiece, {prompt}", "masterpiece, 1girl, art by greg") outputs (True, "1girl, art by greg")
+ extract_style_text_from_prompt("masterpiece, {prompt}", "exquisite, 1girl, art by greg") outputs (False, "exquisite, 1girl, art by greg")
"""
"""
- stripped_prompt = prompt
- stripped_style_text = style_text
+
+ stripped_prompt = prompt.strip()
+ stripped_style_text = style_text.strip()
+
if "{prompt}" in stripped_style_text:
if "{prompt}" in stripped_style_text:
- # Work out whether the prompt is wrapped in the style text. If so, we
- # return True and the "inner" prompt text that isn't part of the style.
- try:
- left, right = stripped_style_text.split("{prompt}", 2)
- except ValueError as e:
- # If the style text has multple "{prompt}"s, we can't split it into
- # two parts. This is an error, but we can't do anything about it.
- print(f"Unable to compare style text to prompt:\n{style_text}")
- print(f"Error: {e}")
- return False, prompt
+ left, right = stripped_style_text.split("{prompt}", 2)
if stripped_prompt.startswith(left) and stripped_prompt.endswith(right):
if stripped_prompt.startswith(left) and stripped_prompt.endswith(right):
- (enable_hr, lambda d: "Denoising strength" in d and ("Hires upscale" in d or "Hires upscaler" in d or "Hires resize-1" in d)),
- (hr_scale, "Hires upscale"),
- (hr_upscaler, "Hires upscaler"),
- (hr_second_pass_steps, "Hires steps"),
- (hr_resize_x, "Hires resize-1"),
- (hr_resize_y, "Hires resize-2"),
- (hr_checkpoint_name, "Hires checkpoint"),
- (hr_sampler_name, "Hires sampler"),
- (hr_sampler_container, lambda d: gr.update(visible=True) if d.get("Hires sampler", "Use same sampler") != "Use same sampler" or d.get("Hires checkpoint", "Use same checkpoint") != "Use same checkpoint" else gr.update()),
- (hr_prompt, "Hires prompt"),
- (hr_negative_prompt, "Hires negative prompt"),
- (hr_prompts_container, lambda d: gr.update(visible=True) if d.get("Hires prompt", "") != "" or d.get("Hires negative prompt", "") != "" else gr.update()),
+ PasteField(enable_hr, lambda d: "Denoising strength" in d and ("Hires upscale" in d or "Hires upscaler" in d or "Hires resize-1" in d), api="enable_hr"),
+ PasteField(hr_sampler_container, lambda d: gr.update(visible=True) if d.get("Hires sampler", "Use same sampler") != "Use same sampler" or d.get("Hires checkpoint", "Use same checkpoint") != "Use same checkpoint" else gr.update()),
if index > -1 and shared.opts.save_selected_only and (index >= data["index_of_first_image"]): # ensures we are looking at a specific non-grid picture, and we have save_selected_only
if index > -1 and shared.opts.save_selected_only and (index >= data["index_of_first_image"]): # ensures we are looking at a specific non-grid picture, and we have save_selected_only
'extras': ToolButton('📐', elem_id=f'{tabname}_send_to_extras', tooltip="Send image and generation parameters to extras tab.")
'extras': ToolButton('📐', elem_id=f'{tabname}_send_to_extras', tooltip="Send image and generation parameters to extras tab.")
}
}
+ if tabname == 'txt2img':
+ res.button_upscale = ToolButton('✨', elem_id=f'{tabname}_upscale', tooltip="Create an upscaled version of the current image using hires fix settings.")
+
open_folder_button.click(
open_folder_button.click(
fn=lambda: open_folder(shared.opts.outdir_samples or outdir),
fn=lambda: open_folder(shared.opts.outdir_samples or outdir),