|
@@ -38,9 +38,9 @@ samplers = [
|
|
|
samplers_for_img2img = [x for x in samplers if x.name != 'PLMS']
|
|
|
|
|
|
|
|
|
-def setup_img2img_steps(p):
|
|
|
- if opts.img2img_fix_steps:
|
|
|
- steps = int(p.steps / min(p.denoising_strength, 0.999))
|
|
|
+def setup_img2img_steps(p, steps=None):
|
|
|
+ if opts.img2img_fix_steps or steps is not None:
|
|
|
+ steps = int((steps or p.steps) / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
|
|
|
t_enc = p.steps - 1
|
|
|
else:
|
|
|
steps = p.steps
|
|
@@ -115,8 +115,8 @@ class VanillaStableDiffusionSampler:
|
|
|
self.step += 1
|
|
|
return res
|
|
|
|
|
|
- def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning):
|
|
|
- steps, t_enc = setup_img2img_steps(p)
|
|
|
+ def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None):
|
|
|
+ steps, t_enc = setup_img2img_steps(p, steps)
|
|
|
|
|
|
# existing code fails with cetain step counts, like 9
|
|
|
try:
|
|
@@ -127,16 +127,16 @@ class VanillaStableDiffusionSampler:
|
|
|
x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
|
|
|
|
|
|
self.sampler.p_sample_ddim = self.p_sample_ddim_hook
|
|
|
- self.mask = p.mask
|
|
|
- self.nmask = p.nmask
|
|
|
- self.init_latent = p.init_latent
|
|
|
+ self.mask = p.mask if hasattr(p, 'mask') else None
|
|
|
+ self.nmask = p.nmask if hasattr(p, 'nmask') else None
|
|
|
+ self.init_latent = x
|
|
|
self.step = 0
|
|
|
|
|
|
samples = self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning)
|
|
|
|
|
|
return samples
|
|
|
|
|
|
- def sample(self, p, x, conditioning, unconditional_conditioning):
|
|
|
+ def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
|
|
|
for fieldname in ['p_sample_ddim', 'p_sample_plms']:
|
|
|
if hasattr(self.sampler, fieldname):
|
|
|
setattr(self.sampler, fieldname, self.p_sample_ddim_hook)
|
|
@@ -145,11 +145,13 @@ class VanillaStableDiffusionSampler:
|
|
|
self.init_latent = None
|
|
|
self.step = 0
|
|
|
|
|
|
+ steps = steps or p.steps
|
|
|
+
|
|
|
# existing code fails with cetin step counts, like 9
|
|
|
try:
|
|
|
- samples_ddim, _ = self.sampler.sample(S=p.steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x)
|
|
|
+ samples_ddim, _ = self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x)
|
|
|
except Exception:
|
|
|
- samples_ddim, _ = self.sampler.sample(S=p.steps+1, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x)
|
|
|
+ samples_ddim, _ = self.sampler.sample(S=steps+1, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x)
|
|
|
|
|
|
return samples_ddim
|
|
|
|
|
@@ -186,7 +188,7 @@ class CFGDenoiser(torch.nn.Module):
|
|
|
return denoised
|
|
|
|
|
|
|
|
|
-def extended_trange(count, *args, **kwargs):
|
|
|
+def extended_trange(sampler, count, *args, **kwargs):
|
|
|
state.sampling_steps = count
|
|
|
state.sampling_step = 0
|
|
|
|
|
@@ -194,6 +196,9 @@ def extended_trange(count, *args, **kwargs):
|
|
|
if state.interrupted:
|
|
|
break
|
|
|
|
|
|
+ if sampler.stop_at is not None and x > sampler.stop_at:
|
|
|
+ break
|
|
|
+
|
|
|
yield x
|
|
|
|
|
|
state.sampling_step += 1
|
|
@@ -222,6 +227,7 @@ class KDiffusionSampler:
|
|
|
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
|
|
|
self.sampler_noises = None
|
|
|
self.sampler_noise_index = 0
|
|
|
+ self.stop_at = None
|
|
|
|
|
|
def callback_state(self, d):
|
|
|
store_latent(d["denoised"])
|
|
@@ -240,8 +246,8 @@ class KDiffusionSampler:
|
|
|
self.sampler_noise_index += 1
|
|
|
return res
|
|
|
|
|
|
- def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning):
|
|
|
- steps, t_enc = setup_img2img_steps(p)
|
|
|
+ def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None):
|
|
|
+ steps, t_enc = setup_img2img_steps(p, steps)
|
|
|
|
|
|
sigmas = self.model_wrap.get_sigmas(steps)
|
|
|
|
|
@@ -251,33 +257,36 @@ class KDiffusionSampler:
|
|
|
|
|
|
sigma_sched = sigmas[steps - t_enc - 1:]
|
|
|
|
|
|
- self.model_wrap_cfg.mask = p.mask
|
|
|
- self.model_wrap_cfg.nmask = p.nmask
|
|
|
- self.model_wrap_cfg.init_latent = p.init_latent
|
|
|
+ self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
|
|
|
+ self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
|
|
|
+ self.model_wrap_cfg.init_latent = x
|
|
|
self.model_wrap.step = 0
|
|
|
self.sampler_noise_index = 0
|
|
|
|
|
|
if hasattr(k_diffusion.sampling, 'trange'):
|
|
|
- k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(*args, **kwargs)
|
|
|
+ k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(self, *args, **kwargs)
|
|
|
|
|
|
if self.sampler_noises is not None:
|
|
|
k_diffusion.sampling.torch = TorchHijack(self)
|
|
|
|
|
|
return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state)
|
|
|
|
|
|
- def sample(self, p, x, conditioning, unconditional_conditioning):
|
|
|
- sigmas = self.model_wrap.get_sigmas(p.steps)
|
|
|
+ def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
|
|
|
+ steps = steps or p.steps
|
|
|
+
|
|
|
+ sigmas = self.model_wrap.get_sigmas(steps)
|
|
|
x = x * sigmas[0]
|
|
|
|
|
|
self.model_wrap_cfg.step = 0
|
|
|
self.sampler_noise_index = 0
|
|
|
|
|
|
if hasattr(k_diffusion.sampling, 'trange'):
|
|
|
- k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(*args, **kwargs)
|
|
|
+ k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(self, *args, **kwargs)
|
|
|
|
|
|
if self.sampler_noises is not None:
|
|
|
k_diffusion.sampling.torch = TorchHijack(self)
|
|
|
|
|
|
- samples_ddim = self.func(self.model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state)
|
|
|
- return samples_ddim
|
|
|
+ samples = self.func(self.model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state)
|
|
|
+
|
|
|
+ return samples
|
|
|
|