Эх сурвалжийг харах

Vendor in the single module used from taming_transformers; remove taming_transformers dependency

(and fix the two ruff complaints)
Aarni Koskela 2 жил өмнө
parent
commit
5fcdaa6a7f

+ 1 - 1
extensions-builtin/LDSR/sd_hijack_autoencoder.py

@@ -10,7 +10,7 @@ from contextlib import contextmanager
 from torch.optim.lr_scheduler import LambdaLR
 
 from ldm.modules.ema import LitEma
-from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
+from vqvae_quantize import VectorQuantizer2 as VectorQuantizer
 from ldm.modules.diffusionmodules.model import Encoder, Decoder
 from ldm.util import instantiate_from_config
 

+ 147 - 0
extensions-builtin/LDSR/vqvae_quantize.py

@@ -0,0 +1,147 @@
+# Vendored from https://raw.githubusercontent.com/CompVis/taming-transformers/24268930bf1dce879235a7fddd0b2355b84d7ea6/taming/modules/vqvae/quantize.py,
+# where the license is as follows:
+#
+# Copyright (c) 2020 Patrick Esser and Robin Rombach and Björn Ommer
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
+# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
+# OR OTHER DEALINGS IN THE SOFTWARE./
+
+import torch
+import torch.nn as nn
+import numpy as np
+from einops import rearrange
+
+
+class VectorQuantizer2(nn.Module):
+    """
+    Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
+    avoids costly matrix multiplications and allows for post-hoc remapping of indices.
+    """
+
+    # NOTE: due to a bug the beta term was applied to the wrong term. for
+    # backwards compatibility we use the buggy version by default, but you can
+    # specify legacy=False to fix it.
+    def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random",
+                 sane_index_shape=False, legacy=True):
+        super().__init__()
+        self.n_e = n_e
+        self.e_dim = e_dim
+        self.beta = beta
+        self.legacy = legacy
+
+        self.embedding = nn.Embedding(self.n_e, self.e_dim)
+        self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
+
+        self.remap = remap
+        if self.remap is not None:
+            self.register_buffer("used", torch.tensor(np.load(self.remap)))
+            self.re_embed = self.used.shape[0]
+            self.unknown_index = unknown_index  # "random" or "extra" or integer
+            if self.unknown_index == "extra":
+                self.unknown_index = self.re_embed
+                self.re_embed = self.re_embed + 1
+            print(f"Remapping {self.n_e} indices to {self.re_embed} indices. "
+                  f"Using {self.unknown_index} for unknown indices.")
+        else:
+            self.re_embed = n_e
+
+        self.sane_index_shape = sane_index_shape
+
+    def remap_to_used(self, inds):
+        ishape = inds.shape
+        assert len(ishape) > 1
+        inds = inds.reshape(ishape[0], -1)
+        used = self.used.to(inds)
+        match = (inds[:, :, None] == used[None, None, ...]).long()
+        new = match.argmax(-1)
+        unknown = match.sum(2) < 1
+        if self.unknown_index == "random":
+            new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
+        else:
+            new[unknown] = self.unknown_index
+        return new.reshape(ishape)
+
+    def unmap_to_all(self, inds):
+        ishape = inds.shape
+        assert len(ishape) > 1
+        inds = inds.reshape(ishape[0], -1)
+        used = self.used.to(inds)
+        if self.re_embed > self.used.shape[0]:  # extra token
+            inds[inds >= self.used.shape[0]] = 0  # simply set to zero
+        back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
+        return back.reshape(ishape)
+
+    def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
+        assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel"
+        assert rescale_logits is False, "Only for interface compatible with Gumbel"
+        assert return_logits is False, "Only for interface compatible with Gumbel"
+        # reshape z -> (batch, height, width, channel) and flatten
+        z = rearrange(z, 'b c h w -> b h w c').contiguous()
+        z_flattened = z.view(-1, self.e_dim)
+        # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
+
+        d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
+            torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \
+            torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n'))
+
+        min_encoding_indices = torch.argmin(d, dim=1)
+        z_q = self.embedding(min_encoding_indices).view(z.shape)
+        perplexity = None
+        min_encodings = None
+
+        # compute loss for embedding
+        if not self.legacy:
+            loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + \
+                   torch.mean((z_q - z.detach()) ** 2)
+        else:
+            loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * \
+                   torch.mean((z_q - z.detach()) ** 2)
+
+        # preserve gradients
+        z_q = z + (z_q - z).detach()
+
+        # reshape back to match original input shape
+        z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous()
+
+        if self.remap is not None:
+            min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1)  # add batch axis
+            min_encoding_indices = self.remap_to_used(min_encoding_indices)
+            min_encoding_indices = min_encoding_indices.reshape(-1, 1)  # flatten
+
+        if self.sane_index_shape:
+            min_encoding_indices = min_encoding_indices.reshape(
+                z_q.shape[0], z_q.shape[2], z_q.shape[3])
+
+        return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
+
+    def get_codebook_entry(self, indices, shape):
+        # shape specifying (batch, height, width, channel)
+        if self.remap is not None:
+            indices = indices.reshape(shape[0], -1)  # add batch axis
+            indices = self.unmap_to_all(indices)
+            indices = indices.reshape(-1)  # flatten again
+
+        # get quantized latent vectors
+        z_q = self.embedding(indices)
+
+        if shape is not None:
+            z_q = z_q.view(shape)
+            # reshape back to match original input shape
+            z_q = z_q.permute(0, 3, 1, 2).contiguous()
+
+        return z_q

+ 0 - 3
modules/launch_utils.py

@@ -229,13 +229,11 @@ def prepare_environment():
     openclip_package = os.environ.get('OPENCLIP_PACKAGE', "https://github.com/mlfoundations/open_clip/archive/bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b.zip")
 
     stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/Stability-AI/stablediffusion.git")
-    taming_transformers_repo = os.environ.get('TAMING_TRANSFORMERS_REPO', "https://github.com/CompVis/taming-transformers.git")
     k_diffusion_repo = os.environ.get('K_DIFFUSION_REPO', 'https://github.com/crowsonkb/k-diffusion.git')
     codeformer_repo = os.environ.get('CODEFORMER_REPO', 'https://github.com/sczhou/CodeFormer.git')
     blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git')
 
     stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "cf1d67a6fd5ea1aa600c4df58e5b47da45f6bdbf")
-    taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
     k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "c9fe758757e022f05ca5a53fa8fac28889e4f1cf")
     codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
     blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
@@ -286,7 +284,6 @@ def prepare_environment():
     os.makedirs(os.path.join(script_path, dir_repos), exist_ok=True)
 
     git_clone(stable_diffusion_repo, repo_dir('stable-diffusion-stability-ai'), "Stable Diffusion", stable_diffusion_commit_hash)
-    git_clone(taming_transformers_repo, repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
     git_clone(k_diffusion_repo, repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
     git_clone(codeformer_repo, repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
     git_clone(blip_repo, repo_dir('BLIP'), "BLIP", blip_commit_hash)

+ 0 - 1
modules/paths.py

@@ -20,7 +20,6 @@ assert sd_path is not None, f"Couldn't find Stable Diffusion in any of: {possibl
 
 path_dirs = [
     (sd_path, 'ldm', 'Stable Diffusion', []),
-    (os.path.join(sd_path, '../taming-transformers'), 'taming', 'Taming Transformers', []),
     (os.path.join(sd_path, '../CodeFormer'), 'inference_codeformer.py', 'CodeFormer', []),
     (os.path.join(sd_path, '../BLIP'), 'models/blip.py', 'BLIP', []),
     (os.path.join(sd_path, '../k-diffusion'), 'k_diffusion/sampling.py', 'k_diffusion', ["atstart"]),

+ 0 - 1
webui-user.sh

@@ -36,7 +36,6 @@
 
 # Fixed git commits
 #export STABLE_DIFFUSION_COMMIT_HASH=""
-#export TAMING_TRANSFORMERS_COMMIT_HASH=""
 #export CODEFORMER_COMMIT_HASH=""
 #export BLIP_COMMIT_HASH=""