|
@@ -1,14 +1,10 @@
|
|
-import numpy as np
|
|
|
|
-from tqdm import trange
|
|
|
|
|
|
+import math
|
|
|
|
|
|
-import modules.scripts as scripts
|
|
|
|
import gradio as gr
|
|
import gradio as gr
|
|
-
|
|
|
|
-from modules import processing, shared, sd_samplers, images
|
|
|
|
|
|
+import modules.scripts as scripts
|
|
|
|
+from modules import deepbooru, images, processing, shared
|
|
from modules.processing import Processed
|
|
from modules.processing import Processed
|
|
-from modules.sd_samplers import samplers
|
|
|
|
-from modules.shared import opts, cmd_opts, state
|
|
|
|
-from modules import deepbooru
|
|
|
|
|
|
+from modules.shared import opts, state
|
|
|
|
|
|
|
|
|
|
class Script(scripts.Script):
|
|
class Script(scripts.Script):
|
|
@@ -20,24 +16,27 @@ class Script(scripts.Script):
|
|
|
|
|
|
def ui(self, is_img2img):
|
|
def ui(self, is_img2img):
|
|
loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4, elem_id=self.elem_id("loops"))
|
|
loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4, elem_id=self.elem_id("loops"))
|
|
- denoising_strength_change_factor = gr.Slider(minimum=0.9, maximum=1.1, step=0.01, label='Denoising strength change factor', value=1, elem_id=self.elem_id("denoising_strength_change_factor"))
|
|
|
|
|
|
+ final_denoising_strength = gr.Slider(minimum=0, maximum=1, step=0.01, label='Final denoising strength', value=0.5, elem_id=self.elem_id("final_denoising_strength"))
|
|
|
|
+ denoising_curve = gr.Dropdown(label="Denoising strength curve", choices=["Aggressive", "Linear", "Lazy"], value="Linear")
|
|
append_interrogation = gr.Dropdown(label="Append interrogated prompt at each iteration", choices=["None", "CLIP", "DeepBooru"], value="None")
|
|
append_interrogation = gr.Dropdown(label="Append interrogated prompt at each iteration", choices=["None", "CLIP", "DeepBooru"], value="None")
|
|
|
|
|
|
- return [loops, denoising_strength_change_factor, append_interrogation]
|
|
|
|
|
|
+ return [loops, final_denoising_strength, denoising_curve, append_interrogation]
|
|
|
|
|
|
- def run(self, p, loops, denoising_strength_change_factor, append_interrogation):
|
|
|
|
|
|
+ def run(self, p, loops, final_denoising_strength, denoising_curve, append_interrogation):
|
|
processing.fix_seed(p)
|
|
processing.fix_seed(p)
|
|
batch_count = p.n_iter
|
|
batch_count = p.n_iter
|
|
p.extra_generation_params = {
|
|
p.extra_generation_params = {
|
|
- "Denoising strength change factor": denoising_strength_change_factor,
|
|
|
|
|
|
+ "Final denoising strength": final_denoising_strength,
|
|
|
|
+ "Denoising curve": denoising_curve
|
|
}
|
|
}
|
|
|
|
|
|
p.batch_size = 1
|
|
p.batch_size = 1
|
|
p.n_iter = 1
|
|
p.n_iter = 1
|
|
|
|
|
|
- output_images, info = None, None
|
|
|
|
|
|
+ info = None
|
|
initial_seed = None
|
|
initial_seed = None
|
|
initial_info = None
|
|
initial_info = None
|
|
|
|
+ initial_denoising_strength = p.denoising_strength
|
|
|
|
|
|
grids = []
|
|
grids = []
|
|
all_images = []
|
|
all_images = []
|
|
@@ -47,12 +46,37 @@ class Script(scripts.Script):
|
|
|
|
|
|
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
|
|
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
|
|
|
|
|
|
- for n in range(batch_count):
|
|
|
|
- history = []
|
|
|
|
|
|
+ def calculate_denoising_strength(loop):
|
|
|
|
+ strength = initial_denoising_strength
|
|
|
|
+
|
|
|
|
+ if loops == 1:
|
|
|
|
+ return strength
|
|
|
|
+
|
|
|
|
+ progress = loop / (loops - 1)
|
|
|
|
+ match denoising_curve:
|
|
|
|
+ case "Aggressive":
|
|
|
|
+ strength = math.sin((progress) * math.pi * 0.5)
|
|
|
|
+
|
|
|
|
+ case "Lazy":
|
|
|
|
+ strength = 1 - math.cos((progress) * math.pi * 0.5)
|
|
|
|
+
|
|
|
|
+ case _:
|
|
|
|
+ strength = progress
|
|
|
|
+
|
|
|
|
+ change = (final_denoising_strength - initial_denoising_strength) * strength
|
|
|
|
+ return initial_denoising_strength + change
|
|
|
|
|
|
|
|
+ history = []
|
|
|
|
+
|
|
|
|
+ for n in range(batch_count):
|
|
# Reset to original init image at the start of each batch
|
|
# Reset to original init image at the start of each batch
|
|
p.init_images = original_init_image
|
|
p.init_images = original_init_image
|
|
|
|
|
|
|
|
+ # Reset to original denoising strength
|
|
|
|
+ p.denoising_strength = initial_denoising_strength
|
|
|
|
+
|
|
|
|
+ last_image = None
|
|
|
|
+
|
|
for i in range(loops):
|
|
for i in range(loops):
|
|
p.n_iter = 1
|
|
p.n_iter = 1
|
|
p.batch_size = 1
|
|
p.batch_size = 1
|
|
@@ -72,26 +96,43 @@ class Script(scripts.Script):
|
|
|
|
|
|
processed = processing.process_images(p)
|
|
processed = processing.process_images(p)
|
|
|
|
|
|
|
|
+ # Generation cancelled.
|
|
|
|
+ if state.interrupted:
|
|
|
|
+ break
|
|
|
|
+
|
|
if initial_seed is None:
|
|
if initial_seed is None:
|
|
initial_seed = processed.seed
|
|
initial_seed = processed.seed
|
|
initial_info = processed.info
|
|
initial_info = processed.info
|
|
|
|
|
|
- init_img = processed.images[0]
|
|
|
|
-
|
|
|
|
- p.init_images = [init_img]
|
|
|
|
p.seed = processed.seed + 1
|
|
p.seed = processed.seed + 1
|
|
- p.denoising_strength = min(max(p.denoising_strength * denoising_strength_change_factor, 0.1), 1)
|
|
|
|
- history.append(processed.images[0])
|
|
|
|
-
|
|
|
|
|
|
+ p.denoising_strength = calculate_denoising_strength(i + 1)
|
|
|
|
+
|
|
|
|
+ if state.skipped:
|
|
|
|
+ break
|
|
|
|
+
|
|
|
|
+ last_image = processed.images[0]
|
|
|
|
+ p.init_images = [last_image]
|
|
|
|
+
|
|
|
|
+ if batch_count == 1:
|
|
|
|
+ history.append(last_image)
|
|
|
|
+ all_images.append(last_image)
|
|
|
|
+
|
|
|
|
+ if batch_count > 1 and not state.skipped and not state.interrupted:
|
|
|
|
+ history.append(last_image)
|
|
|
|
+ all_images.append(last_image)
|
|
|
|
+
|
|
|
|
+ if state.interrupted:
|
|
|
|
+ break
|
|
|
|
+
|
|
|
|
+ if len(history) > 1:
|
|
grid = images.image_grid(history, rows=1)
|
|
grid = images.image_grid(history, rows=1)
|
|
if opts.grid_save:
|
|
if opts.grid_save:
|
|
images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
|
|
images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
|
|
|
|
|
|
- grids.append(grid)
|
|
|
|
- all_images += history
|
|
|
|
-
|
|
|
|
- if opts.return_grid:
|
|
|
|
- all_images = grids + all_images
|
|
|
|
|
|
+ if opts.return_grid:
|
|
|
|
+ grids.append(grid)
|
|
|
|
+
|
|
|
|
+ all_images = grids + all_images
|
|
|
|
|
|
processed = Processed(p, all_images, initial_seed, initial_info)
|
|
processed = Processed(p, all_images, initial_seed, initial_info)
|
|
|
|
|