Procházet zdrojové kódy

Use settings instead of main interface

Kohaku-Blueleaf před 2 roky
rodič
revize
1846ad36a3

+ 1 - 6
javascript/hints.js

@@ -113,12 +113,7 @@ var titles = {
     "Multiplier for extra networks": "When adding extra network such as Hypernetwork or Lora to prompt, use this multiplier for it.",
     "Multiplier for extra networks": "When adding extra network such as Hypernetwork or Lora to prompt, use this multiplier for it.",
     "Discard weights with matching name": "Regular expression; if weights's name matches it, the weights is not written to the resulting checkpoint. Use ^model_ema to discard EMA weights.",
     "Discard weights with matching name": "Regular expression; if weights's name matches it, the weights is not written to the resulting checkpoint. Use ^model_ema to discard EMA weights.",
     "Extra networks tab order": "Comma-separated list of tab names; tabs listed here will appear in the extra networks UI first and in order lsited.",
     "Extra networks tab order": "Comma-separated list of tab names; tabs listed here will appear in the extra networks UI first and in order lsited.",
-    "Negative Guidance minimum sigma": "Skip negative prompt for steps where image is already mostly denoised; the higher this value, the more skips there will be; provides increased performance in exchange for minor quality reduction.",
-
-    "Custom KDiffusion Scheduler": "Custom noise scheduler to use for KDiffusion. See https://arxiv.org/abs/2206.00364",
-    "sigma min": "the minimum noise strength for the scheduler. Set to 0 to use the same value which 'xxx karras' samplers use.",
-    "sigma max": "the maximum noise strength for the scheduler. Set to 0 to use the same value which 'xxx karras' samplers use.",
-    "rho": "higher will make a more steep noise scheduler (decrease faster). default for karras is 7.0, for polyexponential is 1.0"
+    "Negative Guidance minimum sigma": "Skip negative prompt for steps where image is already mostly denoised; the higher this value, the more skips there will be; provides increased performance in exchange for minor quality reduction."
 };
 };
 
 
 function updateTooltipForSpan(span) {
 function updateTooltipForSpan(span) {

+ 5 - 0
modules/generation_parameters_copypaste.py

@@ -318,6 +318,11 @@ infotext_to_setting_name_mapping = [
     ('Conditional mask weight', 'inpainting_mask_weight'),
     ('Conditional mask weight', 'inpainting_mask_weight'),
     ('Model hash', 'sd_model_checkpoint'),
     ('Model hash', 'sd_model_checkpoint'),
     ('ENSD', 'eta_noise_seed_delta'),
     ('ENSD', 'eta_noise_seed_delta'),
+    ('Enable Custom KDiffusion Schedule', 'custom_k_sched'),
+    ('KDiffusion Scheduler Type', 'k_sched_type'),
+    ('KDiffusion Scheduler sigma_max', 'sigma_max'),
+    ('KDiffusion Scheduler sigma_min', 'sigma_min'),
+    ('KDiffusion Scheduler rho', 'rho'),
     ('Noise multiplier', 'initial_noise_multiplier'),
     ('Noise multiplier', 'initial_noise_multiplier'),
     ('Eta', 'eta_ancestral'),
     ('Eta', 'eta_ancestral'),
     ('Eta DDIM', 'eta_ddim'),
     ('Eta DDIM', 'eta_ddim'),

+ 1 - 6
modules/img2img.py

@@ -78,7 +78,7 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args):
                 processed_image.save(os.path.join(output_dir, filename))
                 processed_image.save(os.path.join(output_dir, filename))
 
 
 
 
-def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, enable_k_sched, k_sched_type, sigma_min, sigma_max, rho, *args):
+def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args):
     override_settings = create_override_settings_dict(override_settings_texts)
     override_settings = create_override_settings_dict(override_settings_texts)
 
 
     is_batch = mode == 5
     is_batch = mode == 5
@@ -155,11 +155,6 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
         inpaint_full_res_padding=inpaint_full_res_padding,
         inpaint_full_res_padding=inpaint_full_res_padding,
         inpainting_mask_invert=inpainting_mask_invert,
         inpainting_mask_invert=inpainting_mask_invert,
         override_settings=override_settings,
         override_settings=override_settings,
-        enable_custom_k_sched=enable_k_sched,
-        k_sched_type=k_sched_type,
-        sigma_min=sigma_min,
-        sigma_max=sigma_max,
-        rho=rho
     )
     )
 
 
     p.scripts = modules.scripts.scripts_img2img
     p.scripts = modules.scripts.scripts_img2img

+ 6 - 6
modules/processing.py

@@ -106,7 +106,7 @@ class StableDiffusionProcessing:
     """
     """
     The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
     The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
     """
     """
-    def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None, enable_custom_k_sched: bool = False, k_sched_type: str = "karras", sigma_min: float=0.1, sigma_max: float=10.0, rho: float=7.0):
+    def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None, enable_custom_k_sched: bool = False, k_sched_type: str = "", sigma_min: float=0.0, sigma_max: float=0.0, rho: float=0.0):
         if sampler_index is not None:
         if sampler_index is not None:
             print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
             print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
 
 
@@ -146,11 +146,11 @@ class StableDiffusionProcessing:
         self.s_tmin = s_tmin or opts.s_tmin
         self.s_tmin = s_tmin or opts.s_tmin
         self.s_tmax = s_tmax or float('inf')  # not representable as a standard ui option
         self.s_tmax = s_tmax or float('inf')  # not representable as a standard ui option
         self.s_noise = s_noise or opts.s_noise
         self.s_noise = s_noise or opts.s_noise
-        self.enable_custom_k_sched = enable_custom_k_sched
-        self.k_sched_type = k_sched_type
-        self.sigma_max = sigma_max
-        self.sigma_min = sigma_min
-        self.rho = rho
+        self.enable_custom_k_sched = opts.custom_k_sched
+        self.k_sched_type = k_sched_type or opts.k_sched_type
+        self.sigma_max = sigma_max or opts.sigma_max
+        self.sigma_min = sigma_min or opts.sigma_min
+        self.rho = rho or opts.rho
         self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
         self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
         self.override_settings_restore_afterwards = override_settings_restore_afterwards
         self.override_settings_restore_afterwards = override_settings_restore_afterwards
         self.is_using_inpainting_conditioning = False
         self.is_using_inpainting_conditioning = False

+ 5 - 1
modules/shared.py

@@ -47,7 +47,6 @@ ui_reorder_categories = [
     "inpaint",
     "inpaint",
     "sampler",
     "sampler",
     "checkboxes",
     "checkboxes",
-    "kdiffusion_scheduler",
     "hires_fix",
     "hires_fix",
     "dimensions",
     "dimensions",
     "cfg",
     "cfg",
@@ -518,6 +517,11 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
     's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
     's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
     's_tmin':  OptionInfo(0.0, "sigma tmin",  gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
     's_tmin':  OptionInfo(0.0, "sigma tmin",  gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
     's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
     's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
+    'custom_k_sched': OptionInfo(False, "Enable Custom KDiffusion Scheduler"),
+    'k_sched_type':  OptionInfo("karras", "scheduler type", gr.Dropdown, {"choices": ["karras", "exponential", "polyexponential"]}),
+    'sigma_max': OptionInfo(0.0, "sigma max", gr.Number).info("the maximum noise strength for the scheduler. Set to 0 to use the same value which 'xxx karras' samplers use."),
+    'sigma_min': OptionInfo(0.0, "sigma min", gr.Number).info("the minimum noise strength for the scheduler. Set to 0 to use the same value which 'xxx karras' samplers use."),
+    'rho':  OptionInfo(7.0, "rho", gr.Number).info("higher will make a more steep noise scheduler (decrease faster). default for karras is 7.0, for polyexponential is 1.0"),
     'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}).info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"),
     'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}).info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"),
     'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma").link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"),
     'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma").link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"),
     'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}),
     'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}),

+ 1 - 6
modules/txt2img.py

@@ -7,7 +7,7 @@ from modules.ui import plaintext_to_html
 
 
 
 
 
 
-def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, hr_sampler_index: int, hr_prompt: str, hr_negative_prompt, override_settings_texts, enable_k_sched, k_sched_type, sigma_min, sigma_max, rho, *args):
+def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, hr_sampler_index: int, hr_prompt: str, hr_negative_prompt, override_settings_texts, *args):
     override_settings = create_override_settings_dict(override_settings_texts)
     override_settings = create_override_settings_dict(override_settings_texts)
 
 
     p = processing.StableDiffusionProcessingTxt2Img(
     p = processing.StableDiffusionProcessingTxt2Img(
@@ -43,11 +43,6 @@ def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, step
         hr_prompt=hr_prompt,
         hr_prompt=hr_prompt,
         hr_negative_prompt=hr_negative_prompt,
         hr_negative_prompt=hr_negative_prompt,
         override_settings=override_settings,
         override_settings=override_settings,
-        enable_custom_k_sched=enable_k_sched,
-        k_sched_type=k_sched_type,
-        sigma_min=sigma_min,
-        sigma_max=sigma_max,
-        rho=rho
     )
     )
 
 
     p.scripts = modules.scripts.scripts_txt2img
     p.scripts = modules.scripts.scripts_txt2img

+ 0 - 52
modules/ui.py

@@ -484,7 +484,6 @@ def create_ui():
                         with FormRow(elem_classes="checkboxes-row", variant="compact"):
                         with FormRow(elem_classes="checkboxes-row", variant="compact"):
                             restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="txt2img_restore_faces")
                             restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="txt2img_restore_faces")
                             tiling = gr.Checkbox(label='Tiling', value=False, elem_id="txt2img_tiling")
                             tiling = gr.Checkbox(label='Tiling', value=False, elem_id="txt2img_tiling")
-                            t2i_enable_k_sched = gr.Checkbox(label='Custom KDiffusion Scheduler', value=False, elem_id="txt2img_enable_k_sched")
                             enable_hr = gr.Checkbox(label='Hires. fix', value=False, elem_id="txt2img_enable_hr")
                             enable_hr = gr.Checkbox(label='Hires. fix', value=False, elem_id="txt2img_enable_hr")
                             hr_final_resolution = FormHTML(value="", elem_id="txtimg_hr_finalres", label="Upscaled resolution", interactive=False)
                             hr_final_resolution = FormHTML(value="", elem_id="txtimg_hr_finalres", label="Upscaled resolution", interactive=False)
 
 
@@ -511,14 +510,6 @@ def create_ui():
                                     with gr.Row():
                                     with gr.Row():
                                         hr_negative_prompt = gr.Textbox(label="Negative prompt", elem_id="hires_neg_prompt", show_label=False, lines=3, placeholder="Negative prompt for hires fix pass.\nLeave empty to use the same negative prompt as in first pass.", elem_classes=["prompt"])
                                         hr_negative_prompt = gr.Textbox(label="Negative prompt", elem_id="hires_neg_prompt", show_label=False, lines=3, placeholder="Negative prompt for hires fix pass.\nLeave empty to use the same negative prompt as in first pass.", elem_classes=["prompt"])
 
 
-                    elif category == "kdiffusion_scheduler":
-                        with FormGroup(visible=False, elem_id="txt2img_kdiffusion_scheduler") as t2i_k_sched_options:
-                            with FormRow(elem_id="txt2img_kdiffusion_scheduler_row1", variant="compact"):
-                                t2i_k_sched_type = gr.Dropdown(label="Type", elem_id="t2i_k_sched_type", choices=['karras', 'exponential', 'polyexponential'], value='karras')
-                                t2i_k_sched_sigma_min = gr.Slider(minimum=0.0, maximum=0.5, step=0.05, label='sigma min', value=0.1, elem_id="txt2img_sigma_min")
-                                t2i_k_sched_sigma_max = gr.Slider(minimum=0.0, maximum=50.0, step=0.1, label='sigma max', value=10.0, elem_id="txt2img_sigma_max")
-                                t2i_k_sched_rho = gr.Slider(minimum=0.5, maximum=10.0, step=0.1, label='rho', value=7.0, elem_id="txt2img_rho")
-
                     elif category == "batch":
                     elif category == "batch":
                         if not opts.dimensions_and_batch_together:
                         if not opts.dimensions_and_batch_together:
                             with FormRow(elem_id="txt2img_column_batch"):
                             with FormRow(elem_id="txt2img_column_batch"):
@@ -587,11 +578,6 @@ def create_ui():
                     hr_prompt,
                     hr_prompt,
                     hr_negative_prompt,
                     hr_negative_prompt,
                     override_settings,
                     override_settings,
-                    t2i_enable_k_sched,
-                    t2i_k_sched_type,
-                    t2i_k_sched_sigma_min,
-                    t2i_k_sched_sigma_max,
-                    t2i_k_sched_rho
 
 
                 ] + custom_inputs,
                 ] + custom_inputs,
 
 
@@ -641,13 +627,6 @@ def create_ui():
                 show_progress = False,
                 show_progress = False,
             )
             )
 
 
-            t2i_enable_k_sched.change(
-                fn=lambda x: gr_show(x),
-                inputs=[t2i_enable_k_sched],
-                outputs=[t2i_k_sched_options],
-                show_progress=False
-            )
-
             txt2img_paste_fields = [
             txt2img_paste_fields = [
                 (txt2img_prompt, "Prompt"),
                 (txt2img_prompt, "Prompt"),
                 (txt2img_negative_prompt, "Negative prompt"),
                 (txt2img_negative_prompt, "Negative prompt"),
@@ -676,11 +655,6 @@ def create_ui():
                 (hr_prompt, "Hires prompt"),
                 (hr_prompt, "Hires prompt"),
                 (hr_negative_prompt, "Hires negative prompt"),
                 (hr_negative_prompt, "Hires negative prompt"),
                 (hr_prompts_container, lambda d: gr.update(visible=True) if d.get("Hires prompt", "") != "" or d.get("Hires negative prompt", "") != "" else gr.update()),
                 (hr_prompts_container, lambda d: gr.update(visible=True) if d.get("Hires prompt", "") != "" or d.get("Hires negative prompt", "") != "" else gr.update()),
-                (t2i_enable_k_sched, "Enable Custom KDiffusion Schedule"),
-                (t2i_k_sched_type, "KDiffusion Scheduler Type"),
-                (t2i_k_sched_sigma_max, "KDiffusion Scheduler sigma_max"),
-                (t2i_k_sched_sigma_min, "KDiffusion Scheduler sigma_min"),
-                (t2i_k_sched_rho, "KDiffusion Scheduler rho"),
                 *modules.scripts.scripts_txt2img.infotext_fields
                 *modules.scripts.scripts_txt2img.infotext_fields
             ]
             ]
             parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields, override_settings)
             parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields, override_settings)
@@ -872,15 +846,6 @@ def create_ui():
                         with FormRow(elem_classes="checkboxes-row", variant="compact"):
                         with FormRow(elem_classes="checkboxes-row", variant="compact"):
                             restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="img2img_restore_faces")
                             restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="img2img_restore_faces")
                             tiling = gr.Checkbox(label='Tiling', value=False, elem_id="img2img_tiling")
                             tiling = gr.Checkbox(label='Tiling', value=False, elem_id="img2img_tiling")
-                            i2i_enable_k_sched = gr.Checkbox(label='Custom KDiffusion Scheduler', value=False, elem_id="txt2img_enable_k_sched")
-
-                    elif category == "kdiffusion_scheduler":
-                        with FormGroup(visible=False, elem_id="img2img_kdiffusion_scheduler") as i2i_k_sched_options:
-                            with FormRow(elem_id="img2img_kdiffusion_scheduler_row1", variant="compact"):
-                                i2i_k_sched_type = gr.Dropdown(label="Type", elem_id="t2i_k_sched_type", choices=['karras', 'exponential', 'polyexponential'], value='karras')
-                                i2i_k_sched_sigma_min = gr.Slider(minimum=0.0, maximum=0.5, step=0.05, label='sigma min', value=0.1, elem_id="txt2img_sigma_min")
-                                i2i_k_sched_sigma_max = gr.Slider(minimum=0.0, maximum=50.0, step=0.1, label='sigma max', value=10.0, elem_id="txt2img_sigma_max")
-                                i2i_k_sched_rho = gr.Slider(minimum=0.5, maximum=10.0, step=0.1, label='rho', value=7.0, elem_id="txt2img_rho")
 
 
                     elif category == "batch":
                     elif category == "batch":
                         if not opts.dimensions_and_batch_together:
                         if not opts.dimensions_and_batch_together:
@@ -984,11 +949,6 @@ def create_ui():
                     img2img_batch_output_dir,
                     img2img_batch_output_dir,
                     img2img_batch_inpaint_mask_dir,
                     img2img_batch_inpaint_mask_dir,
                     override_settings,
                     override_settings,
-                    i2i_enable_k_sched,
-                    i2i_k_sched_type,
-                    i2i_k_sched_sigma_min,
-                    i2i_k_sched_sigma_max,
-                    i2i_k_sched_rho
                 ] + custom_inputs,
                 ] + custom_inputs,
                 outputs=[
                 outputs=[
                     img2img_gallery,
                     img2img_gallery,
@@ -1072,13 +1032,6 @@ def create_ui():
                     outputs=[prompt, negative_prompt, styles],
                     outputs=[prompt, negative_prompt, styles],
                 )
                 )
 
 
-            i2i_enable_k_sched.change(
-                fn=lambda x: gr_show(x),
-                inputs=[i2i_enable_k_sched],
-                outputs=[i2i_k_sched_options],
-                show_progress=False
-            )
-
             token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter])
             token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter])
             negative_token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[img2img_negative_prompt, steps], outputs=[negative_token_counter])
             negative_token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[img2img_negative_prompt, steps], outputs=[negative_token_counter])
 
 
@@ -1090,11 +1043,6 @@ def create_ui():
                 (steps, "Steps"),
                 (steps, "Steps"),
                 (sampler_index, "Sampler"),
                 (sampler_index, "Sampler"),
                 (restore_faces, "Face restoration"),
                 (restore_faces, "Face restoration"),
-                (i2i_enable_k_sched, "Enable Custom KDiffusion Schedule"),
-                (i2i_k_sched_type, "KDiffusion Scheduler Type"),
-                (i2i_k_sched_sigma_max, "KDiffusion Scheduler sigma_max"),
-                (i2i_k_sched_sigma_min, "KDiffusion Scheduler sigma_min"),
-                (i2i_k_sched_rho, "KDiffusion Scheduler rho"),
                 (cfg_scale, "CFG scale"),
                 (cfg_scale, "CFG scale"),
                 (image_cfg_scale, "Image CFG scale"),
                 (image_cfg_scale, "Image CFG scale"),
                 (seed, "Seed"),
                 (seed, "Seed"),