allwinner_emac.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540
  1. /*
  2. * Emulation of Allwinner EMAC Fast Ethernet controller and
  3. * Realtek RTL8201CP PHY
  4. *
  5. * Copyright (C) 2014 Beniamino Galvani <b.galvani@gmail.com>
  6. *
  7. * This model is based on reverse-engineering of Linux kernel driver.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. */
  19. #include "qemu/osdep.h"
  20. #include "hw/sysbus.h"
  21. #include "migration/vmstate.h"
  22. #include "net/net.h"
  23. #include "qemu/fifo8.h"
  24. #include "hw/irq.h"
  25. #include "hw/net/allwinner_emac.h"
  26. #include "hw/qdev-properties.h"
  27. #include "qemu/log.h"
  28. #include "qemu/module.h"
  29. #include <zlib.h>
  30. static uint8_t padding[60];
  31. static void mii_set_link(RTL8201CPState *mii, bool link_ok)
  32. {
  33. if (link_ok) {
  34. mii->bmsr |= MII_BMSR_LINK_ST | MII_BMSR_AN_COMP;
  35. mii->anlpar |= MII_ANAR_TXFD | MII_ANAR_10FD | MII_ANAR_10 |
  36. MII_ANAR_CSMACD;
  37. } else {
  38. mii->bmsr &= ~(MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
  39. mii->anlpar = MII_ANAR_TX;
  40. }
  41. }
  42. static void mii_reset(RTL8201CPState *mii, bool link_ok)
  43. {
  44. mii->bmcr = MII_BMCR_FD | MII_BMCR_AUTOEN | MII_BMCR_SPEED;
  45. mii->bmsr = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
  46. MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AUTONEG;
  47. mii->anar = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD | MII_ANAR_10 |
  48. MII_ANAR_CSMACD;
  49. mii->anlpar = MII_ANAR_TX;
  50. mii_set_link(mii, link_ok);
  51. }
  52. static uint16_t RTL8201CP_mdio_read(AwEmacState *s, uint8_t addr, uint8_t reg)
  53. {
  54. RTL8201CPState *mii = &s->mii;
  55. uint16_t ret = 0xffff;
  56. if (addr == s->phy_addr) {
  57. switch (reg) {
  58. case MII_BMCR:
  59. return mii->bmcr;
  60. case MII_BMSR:
  61. return mii->bmsr;
  62. case MII_PHYID1:
  63. return RTL8201CP_PHYID1;
  64. case MII_PHYID2:
  65. return RTL8201CP_PHYID2;
  66. case MII_ANAR:
  67. return mii->anar;
  68. case MII_ANLPAR:
  69. return mii->anlpar;
  70. case MII_ANER:
  71. case MII_NSR:
  72. case MII_LBREMR:
  73. case MII_REC:
  74. case MII_SNRDR:
  75. case MII_TEST:
  76. qemu_log_mask(LOG_UNIMP,
  77. "allwinner_emac: read from unimpl. mii reg 0x%x\n",
  78. reg);
  79. return 0;
  80. default:
  81. qemu_log_mask(LOG_GUEST_ERROR,
  82. "allwinner_emac: read from invalid mii reg 0x%x\n",
  83. reg);
  84. return 0;
  85. }
  86. }
  87. return ret;
  88. }
  89. static void RTL8201CP_mdio_write(AwEmacState *s, uint8_t addr, uint8_t reg,
  90. uint16_t value)
  91. {
  92. RTL8201CPState *mii = &s->mii;
  93. NetClientState *nc;
  94. if (addr == s->phy_addr) {
  95. switch (reg) {
  96. case MII_BMCR:
  97. if (value & MII_BMCR_RESET) {
  98. nc = qemu_get_queue(s->nic);
  99. mii_reset(mii, !nc->link_down);
  100. } else {
  101. mii->bmcr = value;
  102. }
  103. break;
  104. case MII_ANAR:
  105. mii->anar = value;
  106. break;
  107. case MII_BMSR:
  108. case MII_PHYID1:
  109. case MII_PHYID2:
  110. case MII_ANLPAR:
  111. case MII_ANER:
  112. qemu_log_mask(LOG_GUEST_ERROR,
  113. "allwinner_emac: write to read-only mii reg 0x%x\n",
  114. reg);
  115. break;
  116. case MII_NSR:
  117. case MII_LBREMR:
  118. case MII_REC:
  119. case MII_SNRDR:
  120. case MII_TEST:
  121. qemu_log_mask(LOG_UNIMP,
  122. "allwinner_emac: write to unimpl. mii reg 0x%x\n",
  123. reg);
  124. break;
  125. default:
  126. qemu_log_mask(LOG_GUEST_ERROR,
  127. "allwinner_emac: write to invalid mii reg 0x%x\n",
  128. reg);
  129. }
  130. }
  131. }
  132. static void aw_emac_update_irq(AwEmacState *s)
  133. {
  134. qemu_set_irq(s->irq, (s->int_sta & s->int_ctl) != 0);
  135. }
  136. static void aw_emac_tx_reset(AwEmacState *s, int chan)
  137. {
  138. fifo8_reset(&s->tx_fifo[chan]);
  139. s->tx_length[chan] = 0;
  140. }
  141. static void aw_emac_rx_reset(AwEmacState *s)
  142. {
  143. fifo8_reset(&s->rx_fifo);
  144. s->rx_num_packets = 0;
  145. s->rx_packet_size = 0;
  146. s->rx_packet_pos = 0;
  147. }
  148. static void fifo8_push_word(Fifo8 *fifo, uint32_t val)
  149. {
  150. fifo8_push(fifo, val);
  151. fifo8_push(fifo, val >> 8);
  152. fifo8_push(fifo, val >> 16);
  153. fifo8_push(fifo, val >> 24);
  154. }
  155. static uint32_t fifo8_pop_word(Fifo8 *fifo)
  156. {
  157. uint32_t ret;
  158. ret = fifo8_pop(fifo);
  159. ret |= fifo8_pop(fifo) << 8;
  160. ret |= fifo8_pop(fifo) << 16;
  161. ret |= fifo8_pop(fifo) << 24;
  162. return ret;
  163. }
  164. static bool aw_emac_can_receive(NetClientState *nc)
  165. {
  166. AwEmacState *s = qemu_get_nic_opaque(nc);
  167. /*
  168. * To avoid packet drops, allow reception only when there is space
  169. * for a full frame: 1522 + 8 (rx headers) + 2 (padding).
  170. */
  171. return (s->ctl & EMAC_CTL_RX_EN) && (fifo8_num_free(&s->rx_fifo) >= 1532);
  172. }
  173. static ssize_t aw_emac_receive(NetClientState *nc, const uint8_t *buf,
  174. size_t size)
  175. {
  176. AwEmacState *s = qemu_get_nic_opaque(nc);
  177. Fifo8 *fifo = &s->rx_fifo;
  178. size_t padded_size, total_size;
  179. uint32_t crc;
  180. padded_size = size > 60 ? size : 60;
  181. total_size = QEMU_ALIGN_UP(RX_HDR_SIZE + padded_size + CRC_SIZE, 4);
  182. if (!(s->ctl & EMAC_CTL_RX_EN) || (fifo8_num_free(fifo) < total_size)) {
  183. return -1;
  184. }
  185. fifo8_push_word(fifo, EMAC_UNDOCUMENTED_MAGIC);
  186. fifo8_push_word(fifo, EMAC_RX_HEADER(padded_size + CRC_SIZE,
  187. EMAC_RX_IO_DATA_STATUS_OK));
  188. fifo8_push_all(fifo, buf, size);
  189. crc = crc32(~0, buf, size);
  190. if (padded_size != size) {
  191. fifo8_push_all(fifo, padding, padded_size - size);
  192. crc = crc32(crc, padding, padded_size - size);
  193. }
  194. fifo8_push_word(fifo, crc);
  195. fifo8_push_all(fifo, padding, QEMU_ALIGN_UP(padded_size, 4) - padded_size);
  196. s->rx_num_packets++;
  197. s->int_sta |= EMAC_INT_RX;
  198. aw_emac_update_irq(s);
  199. return size;
  200. }
  201. static void aw_emac_reset(DeviceState *dev)
  202. {
  203. AwEmacState *s = AW_EMAC(dev);
  204. NetClientState *nc = qemu_get_queue(s->nic);
  205. s->ctl = 0;
  206. s->tx_mode = 0;
  207. s->int_ctl = 0;
  208. s->int_sta = 0;
  209. s->tx_channel = 0;
  210. s->phy_target = 0;
  211. aw_emac_tx_reset(s, 0);
  212. aw_emac_tx_reset(s, 1);
  213. aw_emac_rx_reset(s);
  214. mii_reset(&s->mii, !nc->link_down);
  215. }
  216. static uint64_t aw_emac_read(void *opaque, hwaddr offset, unsigned size)
  217. {
  218. AwEmacState *s = opaque;
  219. Fifo8 *fifo = &s->rx_fifo;
  220. NetClientState *nc;
  221. uint64_t ret;
  222. switch (offset) {
  223. case EMAC_CTL_REG:
  224. return s->ctl;
  225. case EMAC_TX_MODE_REG:
  226. return s->tx_mode;
  227. case EMAC_TX_INS_REG:
  228. return s->tx_channel;
  229. case EMAC_RX_CTL_REG:
  230. return s->rx_ctl;
  231. case EMAC_RX_IO_DATA_REG:
  232. if (!s->rx_num_packets) {
  233. qemu_log_mask(LOG_GUEST_ERROR,
  234. "Read IO data register when no packet available");
  235. return 0;
  236. }
  237. ret = fifo8_pop_word(fifo);
  238. switch (s->rx_packet_pos) {
  239. case 0: /* Word is magic header */
  240. s->rx_packet_pos += 4;
  241. break;
  242. case 4: /* Word is rx info header */
  243. s->rx_packet_pos += 4;
  244. s->rx_packet_size = QEMU_ALIGN_UP(extract32(ret, 0, 16), 4);
  245. break;
  246. default: /* Word is packet data */
  247. s->rx_packet_pos += 4;
  248. s->rx_packet_size -= 4;
  249. if (!s->rx_packet_size) {
  250. s->rx_packet_pos = 0;
  251. s->rx_num_packets--;
  252. nc = qemu_get_queue(s->nic);
  253. if (aw_emac_can_receive(nc)) {
  254. qemu_flush_queued_packets(nc);
  255. }
  256. }
  257. }
  258. return ret;
  259. case EMAC_RX_FBC_REG:
  260. return s->rx_num_packets;
  261. case EMAC_INT_CTL_REG:
  262. return s->int_ctl;
  263. case EMAC_INT_STA_REG:
  264. return s->int_sta;
  265. case EMAC_MAC_MRDD_REG:
  266. return RTL8201CP_mdio_read(s,
  267. extract32(s->phy_target, PHY_ADDR_SHIFT, 8),
  268. extract32(s->phy_target, PHY_REG_SHIFT, 8));
  269. default:
  270. qemu_log_mask(LOG_UNIMP,
  271. "allwinner_emac: read access to unknown register 0x"
  272. HWADDR_FMT_plx "\n", offset);
  273. ret = 0;
  274. }
  275. return ret;
  276. }
  277. static void aw_emac_write(void *opaque, hwaddr offset, uint64_t value,
  278. unsigned size)
  279. {
  280. AwEmacState *s = opaque;
  281. Fifo8 *fifo;
  282. NetClientState *nc = qemu_get_queue(s->nic);
  283. int chan;
  284. switch (offset) {
  285. case EMAC_CTL_REG:
  286. if (value & EMAC_CTL_RESET) {
  287. aw_emac_reset(DEVICE(s));
  288. value &= ~EMAC_CTL_RESET;
  289. }
  290. s->ctl = value;
  291. if (aw_emac_can_receive(nc)) {
  292. qemu_flush_queued_packets(nc);
  293. }
  294. break;
  295. case EMAC_TX_MODE_REG:
  296. s->tx_mode = value;
  297. break;
  298. case EMAC_TX_CTL0_REG:
  299. case EMAC_TX_CTL1_REG:
  300. chan = (offset == EMAC_TX_CTL0_REG ? 0 : 1);
  301. if ((value & 1) && (s->ctl & EMAC_CTL_TX_EN)) {
  302. uint32_t len, ret;
  303. const uint8_t *data;
  304. fifo = &s->tx_fifo[chan];
  305. len = s->tx_length[chan];
  306. if (len > fifo8_num_used(fifo)) {
  307. len = fifo8_num_used(fifo);
  308. qemu_log_mask(LOG_GUEST_ERROR,
  309. "allwinner_emac: TX length > fifo data length\n");
  310. }
  311. if (len > 0) {
  312. data = fifo8_pop_buf(fifo, len, &ret);
  313. qemu_send_packet(nc, data, ret);
  314. aw_emac_tx_reset(s, chan);
  315. /* Raise TX interrupt */
  316. s->int_sta |= EMAC_INT_TX_CHAN(chan);
  317. aw_emac_update_irq(s);
  318. }
  319. }
  320. break;
  321. case EMAC_TX_INS_REG:
  322. s->tx_channel = value < NUM_TX_FIFOS ? value : 0;
  323. break;
  324. case EMAC_TX_PL0_REG:
  325. case EMAC_TX_PL1_REG:
  326. chan = (offset == EMAC_TX_PL0_REG ? 0 : 1);
  327. if (value > TX_FIFO_SIZE) {
  328. qemu_log_mask(LOG_GUEST_ERROR,
  329. "allwinner_emac: invalid TX frame length %d\n",
  330. (int)value);
  331. value = TX_FIFO_SIZE;
  332. }
  333. s->tx_length[chan] = value;
  334. break;
  335. case EMAC_TX_IO_DATA_REG:
  336. fifo = &s->tx_fifo[s->tx_channel];
  337. if (fifo8_num_free(fifo) < 4) {
  338. qemu_log_mask(LOG_GUEST_ERROR,
  339. "allwinner_emac: TX data overruns fifo\n");
  340. break;
  341. }
  342. fifo8_push_word(fifo, value);
  343. break;
  344. case EMAC_RX_CTL_REG:
  345. s->rx_ctl = value;
  346. break;
  347. case EMAC_RX_FBC_REG:
  348. if (value == 0) {
  349. aw_emac_rx_reset(s);
  350. }
  351. break;
  352. case EMAC_INT_CTL_REG:
  353. s->int_ctl = value;
  354. aw_emac_update_irq(s);
  355. break;
  356. case EMAC_INT_STA_REG:
  357. s->int_sta &= ~value;
  358. aw_emac_update_irq(s);
  359. break;
  360. case EMAC_MAC_MADR_REG:
  361. s->phy_target = value;
  362. break;
  363. case EMAC_MAC_MWTD_REG:
  364. RTL8201CP_mdio_write(s, extract32(s->phy_target, PHY_ADDR_SHIFT, 8),
  365. extract32(s->phy_target, PHY_REG_SHIFT, 8), value);
  366. break;
  367. default:
  368. qemu_log_mask(LOG_UNIMP,
  369. "allwinner_emac: write access to unknown register 0x"
  370. HWADDR_FMT_plx "\n", offset);
  371. }
  372. }
  373. static void aw_emac_set_link(NetClientState *nc)
  374. {
  375. AwEmacState *s = qemu_get_nic_opaque(nc);
  376. mii_set_link(&s->mii, !nc->link_down);
  377. }
  378. static const MemoryRegionOps aw_emac_mem_ops = {
  379. .read = aw_emac_read,
  380. .write = aw_emac_write,
  381. .endianness = DEVICE_NATIVE_ENDIAN,
  382. .valid = {
  383. .min_access_size = 4,
  384. .max_access_size = 4,
  385. },
  386. };
  387. static NetClientInfo net_aw_emac_info = {
  388. .type = NET_CLIENT_DRIVER_NIC,
  389. .size = sizeof(NICState),
  390. .can_receive = aw_emac_can_receive,
  391. .receive = aw_emac_receive,
  392. .link_status_changed = aw_emac_set_link,
  393. };
  394. static void aw_emac_init(Object *obj)
  395. {
  396. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  397. AwEmacState *s = AW_EMAC(obj);
  398. memory_region_init_io(&s->iomem, OBJECT(s), &aw_emac_mem_ops, s,
  399. "aw_emac", 0x1000);
  400. sysbus_init_mmio(sbd, &s->iomem);
  401. sysbus_init_irq(sbd, &s->irq);
  402. }
  403. static void aw_emac_realize(DeviceState *dev, Error **errp)
  404. {
  405. AwEmacState *s = AW_EMAC(dev);
  406. qemu_macaddr_default_if_unset(&s->conf.macaddr);
  407. s->nic = qemu_new_nic(&net_aw_emac_info, &s->conf,
  408. object_get_typename(OBJECT(dev)), dev->id, s);
  409. qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
  410. fifo8_create(&s->rx_fifo, RX_FIFO_SIZE);
  411. fifo8_create(&s->tx_fifo[0], TX_FIFO_SIZE);
  412. fifo8_create(&s->tx_fifo[1], TX_FIFO_SIZE);
  413. }
  414. static Property aw_emac_properties[] = {
  415. DEFINE_NIC_PROPERTIES(AwEmacState, conf),
  416. DEFINE_PROP_UINT8("phy-addr", AwEmacState, phy_addr, 0),
  417. DEFINE_PROP_END_OF_LIST(),
  418. };
  419. static const VMStateDescription vmstate_mii = {
  420. .name = "rtl8201cp",
  421. .version_id = 1,
  422. .minimum_version_id = 1,
  423. .fields = (VMStateField[]) {
  424. VMSTATE_UINT16(bmcr, RTL8201CPState),
  425. VMSTATE_UINT16(bmsr, RTL8201CPState),
  426. VMSTATE_UINT16(anar, RTL8201CPState),
  427. VMSTATE_UINT16(anlpar, RTL8201CPState),
  428. VMSTATE_END_OF_LIST()
  429. }
  430. };
  431. static int aw_emac_post_load(void *opaque, int version_id)
  432. {
  433. AwEmacState *s = opaque;
  434. aw_emac_set_link(qemu_get_queue(s->nic));
  435. return 0;
  436. }
  437. static const VMStateDescription vmstate_aw_emac = {
  438. .name = "allwinner_emac",
  439. .version_id = 1,
  440. .minimum_version_id = 1,
  441. .post_load = aw_emac_post_load,
  442. .fields = (VMStateField[]) {
  443. VMSTATE_STRUCT(mii, AwEmacState, 1, vmstate_mii, RTL8201CPState),
  444. VMSTATE_UINT32(ctl, AwEmacState),
  445. VMSTATE_UINT32(tx_mode, AwEmacState),
  446. VMSTATE_UINT32(rx_ctl, AwEmacState),
  447. VMSTATE_UINT32(int_ctl, AwEmacState),
  448. VMSTATE_UINT32(int_sta, AwEmacState),
  449. VMSTATE_UINT32(phy_target, AwEmacState),
  450. VMSTATE_FIFO8(rx_fifo, AwEmacState),
  451. VMSTATE_UINT32(rx_num_packets, AwEmacState),
  452. VMSTATE_UINT32(rx_packet_size, AwEmacState),
  453. VMSTATE_UINT32(rx_packet_pos, AwEmacState),
  454. VMSTATE_STRUCT_ARRAY(tx_fifo, AwEmacState, NUM_TX_FIFOS, 1,
  455. vmstate_fifo8, Fifo8),
  456. VMSTATE_UINT32_ARRAY(tx_length, AwEmacState, NUM_TX_FIFOS),
  457. VMSTATE_UINT32(tx_channel, AwEmacState),
  458. VMSTATE_END_OF_LIST()
  459. }
  460. };
  461. static void aw_emac_class_init(ObjectClass *klass, void *data)
  462. {
  463. DeviceClass *dc = DEVICE_CLASS(klass);
  464. dc->realize = aw_emac_realize;
  465. device_class_set_props(dc, aw_emac_properties);
  466. dc->reset = aw_emac_reset;
  467. dc->vmsd = &vmstate_aw_emac;
  468. }
  469. static const TypeInfo aw_emac_info = {
  470. .name = TYPE_AW_EMAC,
  471. .parent = TYPE_SYS_BUS_DEVICE,
  472. .instance_size = sizeof(AwEmacState),
  473. .instance_init = aw_emac_init,
  474. .class_init = aw_emac_class_init,
  475. };
  476. static void aw_emac_register_types(void)
  477. {
  478. type_register_static(&aw_emac_info);
  479. }
  480. type_init(aw_emac_register_types)