2
0

net_tx_pkt.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852
  1. /*
  2. * QEMU TX packets abstractions
  3. *
  4. * Copyright (c) 2012 Ravello Systems LTD (http://ravellosystems.com)
  5. *
  6. * Developed by Daynix Computing LTD (http://www.daynix.com)
  7. *
  8. * Authors:
  9. * Dmitry Fleytman <dmitry@daynix.com>
  10. * Tamir Shomer <tamirs@daynix.com>
  11. * Yan Vugenfirer <yan@daynix.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2 or later.
  14. * See the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "qemu/osdep.h"
  18. #include "net_tx_pkt.h"
  19. #include "net/eth.h"
  20. #include "net/checksum.h"
  21. #include "net/tap.h"
  22. #include "net/net.h"
  23. #include "hw/pci/pci_device.h"
  24. enum {
  25. NET_TX_PKT_VHDR_FRAG = 0,
  26. NET_TX_PKT_L2HDR_FRAG,
  27. NET_TX_PKT_L3HDR_FRAG,
  28. NET_TX_PKT_PL_START_FRAG
  29. };
  30. /* TX packet private context */
  31. struct NetTxPkt {
  32. PCIDevice *pci_dev;
  33. struct virtio_net_hdr virt_hdr;
  34. struct iovec *raw;
  35. uint32_t raw_frags;
  36. uint32_t max_raw_frags;
  37. struct iovec *vec;
  38. uint8_t l2_hdr[ETH_MAX_L2_HDR_LEN];
  39. union {
  40. struct ip_header ip;
  41. struct ip6_header ip6;
  42. uint8_t octets[ETH_MAX_IP_DGRAM_LEN];
  43. } l3_hdr;
  44. uint32_t payload_len;
  45. uint32_t payload_frags;
  46. uint32_t max_payload_frags;
  47. uint16_t hdr_len;
  48. eth_pkt_types_e packet_type;
  49. uint8_t l4proto;
  50. };
  51. void net_tx_pkt_init(struct NetTxPkt **pkt, PCIDevice *pci_dev,
  52. uint32_t max_frags)
  53. {
  54. struct NetTxPkt *p = g_malloc0(sizeof *p);
  55. p->pci_dev = pci_dev;
  56. p->vec = g_new(struct iovec, max_frags + NET_TX_PKT_PL_START_FRAG);
  57. p->raw = g_new(struct iovec, max_frags);
  58. p->max_payload_frags = max_frags;
  59. p->max_raw_frags = max_frags;
  60. p->vec[NET_TX_PKT_VHDR_FRAG].iov_base = &p->virt_hdr;
  61. p->vec[NET_TX_PKT_VHDR_FRAG].iov_len = sizeof p->virt_hdr;
  62. p->vec[NET_TX_PKT_L2HDR_FRAG].iov_base = &p->l2_hdr;
  63. p->vec[NET_TX_PKT_L3HDR_FRAG].iov_base = &p->l3_hdr;
  64. *pkt = p;
  65. }
  66. void net_tx_pkt_uninit(struct NetTxPkt *pkt)
  67. {
  68. if (pkt) {
  69. g_free(pkt->vec);
  70. g_free(pkt->raw);
  71. g_free(pkt);
  72. }
  73. }
  74. void net_tx_pkt_update_ip_hdr_checksum(struct NetTxPkt *pkt)
  75. {
  76. uint16_t csum;
  77. assert(pkt);
  78. pkt->l3_hdr.ip.ip_len = cpu_to_be16(pkt->payload_len +
  79. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len);
  80. pkt->l3_hdr.ip.ip_sum = 0;
  81. csum = net_raw_checksum(pkt->l3_hdr.octets,
  82. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len);
  83. pkt->l3_hdr.ip.ip_sum = cpu_to_be16(csum);
  84. }
  85. void net_tx_pkt_update_ip_checksums(struct NetTxPkt *pkt)
  86. {
  87. uint16_t csum;
  88. uint32_t cntr, cso;
  89. assert(pkt);
  90. uint8_t gso_type = pkt->virt_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN;
  91. void *ip_hdr = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base;
  92. if (pkt->payload_len + pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len >
  93. ETH_MAX_IP_DGRAM_LEN) {
  94. return;
  95. }
  96. if (gso_type == VIRTIO_NET_HDR_GSO_TCPV4 ||
  97. gso_type == VIRTIO_NET_HDR_GSO_UDP) {
  98. /* Calculate IP header checksum */
  99. net_tx_pkt_update_ip_hdr_checksum(pkt);
  100. /* Calculate IP pseudo header checksum */
  101. cntr = eth_calc_ip4_pseudo_hdr_csum(ip_hdr, pkt->payload_len, &cso);
  102. csum = cpu_to_be16(~net_checksum_finish(cntr));
  103. } else if (gso_type == VIRTIO_NET_HDR_GSO_TCPV6) {
  104. /* Calculate IP pseudo header checksum */
  105. cntr = eth_calc_ip6_pseudo_hdr_csum(ip_hdr, pkt->payload_len,
  106. IP_PROTO_TCP, &cso);
  107. csum = cpu_to_be16(~net_checksum_finish(cntr));
  108. } else {
  109. return;
  110. }
  111. iov_from_buf(&pkt->vec[NET_TX_PKT_PL_START_FRAG], pkt->payload_frags,
  112. pkt->virt_hdr.csum_offset, &csum, sizeof(csum));
  113. }
  114. static void net_tx_pkt_calculate_hdr_len(struct NetTxPkt *pkt)
  115. {
  116. pkt->hdr_len = pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len +
  117. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len;
  118. }
  119. static bool net_tx_pkt_parse_headers(struct NetTxPkt *pkt)
  120. {
  121. struct iovec *l2_hdr, *l3_hdr;
  122. size_t bytes_read;
  123. size_t full_ip6hdr_len;
  124. uint16_t l3_proto;
  125. assert(pkt);
  126. l2_hdr = &pkt->vec[NET_TX_PKT_L2HDR_FRAG];
  127. l3_hdr = &pkt->vec[NET_TX_PKT_L3HDR_FRAG];
  128. bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, 0, l2_hdr->iov_base,
  129. ETH_MAX_L2_HDR_LEN);
  130. if (bytes_read < sizeof(struct eth_header)) {
  131. l2_hdr->iov_len = 0;
  132. return false;
  133. }
  134. l2_hdr->iov_len = sizeof(struct eth_header);
  135. switch (be16_to_cpu(PKT_GET_ETH_HDR(l2_hdr->iov_base)->h_proto)) {
  136. case ETH_P_VLAN:
  137. l2_hdr->iov_len += sizeof(struct vlan_header);
  138. break;
  139. case ETH_P_DVLAN:
  140. l2_hdr->iov_len += 2 * sizeof(struct vlan_header);
  141. break;
  142. }
  143. if (bytes_read < l2_hdr->iov_len) {
  144. l2_hdr->iov_len = 0;
  145. l3_hdr->iov_len = 0;
  146. pkt->packet_type = ETH_PKT_UCAST;
  147. return false;
  148. } else {
  149. l2_hdr->iov_len = ETH_MAX_L2_HDR_LEN;
  150. l2_hdr->iov_len = eth_get_l2_hdr_length(l2_hdr->iov_base);
  151. pkt->packet_type = get_eth_packet_type(l2_hdr->iov_base);
  152. }
  153. l3_proto = eth_get_l3_proto(l2_hdr, 1, l2_hdr->iov_len);
  154. switch (l3_proto) {
  155. case ETH_P_IP:
  156. bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, l2_hdr->iov_len,
  157. l3_hdr->iov_base, sizeof(struct ip_header));
  158. if (bytes_read < sizeof(struct ip_header)) {
  159. l3_hdr->iov_len = 0;
  160. return false;
  161. }
  162. l3_hdr->iov_len = IP_HDR_GET_LEN(l3_hdr->iov_base);
  163. if (l3_hdr->iov_len < sizeof(struct ip_header)) {
  164. l3_hdr->iov_len = 0;
  165. return false;
  166. }
  167. pkt->l4proto = IP_HDR_GET_P(l3_hdr->iov_base);
  168. if (IP_HDR_GET_LEN(l3_hdr->iov_base) != sizeof(struct ip_header)) {
  169. /* copy optional IPv4 header data if any*/
  170. bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags,
  171. l2_hdr->iov_len + sizeof(struct ip_header),
  172. l3_hdr->iov_base + sizeof(struct ip_header),
  173. l3_hdr->iov_len - sizeof(struct ip_header));
  174. if (bytes_read < l3_hdr->iov_len - sizeof(struct ip_header)) {
  175. l3_hdr->iov_len = 0;
  176. return false;
  177. }
  178. }
  179. break;
  180. case ETH_P_IPV6:
  181. {
  182. eth_ip6_hdr_info hdrinfo;
  183. if (!eth_parse_ipv6_hdr(pkt->raw, pkt->raw_frags, l2_hdr->iov_len,
  184. &hdrinfo)) {
  185. l3_hdr->iov_len = 0;
  186. return false;
  187. }
  188. pkt->l4proto = hdrinfo.l4proto;
  189. full_ip6hdr_len = hdrinfo.full_hdr_len;
  190. if (full_ip6hdr_len > ETH_MAX_IP_DGRAM_LEN) {
  191. l3_hdr->iov_len = 0;
  192. return false;
  193. }
  194. bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, l2_hdr->iov_len,
  195. l3_hdr->iov_base, full_ip6hdr_len);
  196. if (bytes_read < full_ip6hdr_len) {
  197. l3_hdr->iov_len = 0;
  198. return false;
  199. } else {
  200. l3_hdr->iov_len = full_ip6hdr_len;
  201. }
  202. break;
  203. }
  204. default:
  205. l3_hdr->iov_len = 0;
  206. break;
  207. }
  208. net_tx_pkt_calculate_hdr_len(pkt);
  209. return true;
  210. }
  211. static void net_tx_pkt_rebuild_payload(struct NetTxPkt *pkt)
  212. {
  213. pkt->payload_len = iov_size(pkt->raw, pkt->raw_frags) - pkt->hdr_len;
  214. pkt->payload_frags = iov_copy(&pkt->vec[NET_TX_PKT_PL_START_FRAG],
  215. pkt->max_payload_frags,
  216. pkt->raw, pkt->raw_frags,
  217. pkt->hdr_len, pkt->payload_len);
  218. }
  219. bool net_tx_pkt_parse(struct NetTxPkt *pkt)
  220. {
  221. if (net_tx_pkt_parse_headers(pkt)) {
  222. net_tx_pkt_rebuild_payload(pkt);
  223. return true;
  224. } else {
  225. return false;
  226. }
  227. }
  228. struct virtio_net_hdr *net_tx_pkt_get_vhdr(struct NetTxPkt *pkt)
  229. {
  230. assert(pkt);
  231. return &pkt->virt_hdr;
  232. }
  233. static uint8_t net_tx_pkt_get_gso_type(struct NetTxPkt *pkt,
  234. bool tso_enable)
  235. {
  236. uint8_t rc = VIRTIO_NET_HDR_GSO_NONE;
  237. uint16_t l3_proto;
  238. l3_proto = eth_get_l3_proto(&pkt->vec[NET_TX_PKT_L2HDR_FRAG], 1,
  239. pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len);
  240. if (!tso_enable) {
  241. goto func_exit;
  242. }
  243. rc = eth_get_gso_type(l3_proto, pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base,
  244. pkt->l4proto);
  245. func_exit:
  246. return rc;
  247. }
  248. bool net_tx_pkt_build_vheader(struct NetTxPkt *pkt, bool tso_enable,
  249. bool csum_enable, uint32_t gso_size)
  250. {
  251. struct tcp_hdr l4hdr;
  252. size_t bytes_read;
  253. assert(pkt);
  254. /* csum has to be enabled if tso is. */
  255. assert(csum_enable || !tso_enable);
  256. pkt->virt_hdr.gso_type = net_tx_pkt_get_gso_type(pkt, tso_enable);
  257. switch (pkt->virt_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
  258. case VIRTIO_NET_HDR_GSO_NONE:
  259. pkt->virt_hdr.hdr_len = 0;
  260. pkt->virt_hdr.gso_size = 0;
  261. break;
  262. case VIRTIO_NET_HDR_GSO_UDP:
  263. pkt->virt_hdr.gso_size = gso_size;
  264. pkt->virt_hdr.hdr_len = pkt->hdr_len + sizeof(struct udp_header);
  265. break;
  266. case VIRTIO_NET_HDR_GSO_TCPV4:
  267. case VIRTIO_NET_HDR_GSO_TCPV6:
  268. bytes_read = iov_to_buf(&pkt->vec[NET_TX_PKT_PL_START_FRAG],
  269. pkt->payload_frags, 0, &l4hdr, sizeof(l4hdr));
  270. if (bytes_read < sizeof(l4hdr) ||
  271. l4hdr.th_off * sizeof(uint32_t) < sizeof(l4hdr)) {
  272. return false;
  273. }
  274. pkt->virt_hdr.hdr_len = pkt->hdr_len + l4hdr.th_off * sizeof(uint32_t);
  275. pkt->virt_hdr.gso_size = gso_size;
  276. break;
  277. default:
  278. g_assert_not_reached();
  279. }
  280. if (csum_enable) {
  281. switch (pkt->l4proto) {
  282. case IP_PROTO_TCP:
  283. if (pkt->payload_len < sizeof(struct tcp_hdr)) {
  284. return false;
  285. }
  286. pkt->virt_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
  287. pkt->virt_hdr.csum_start = pkt->hdr_len;
  288. pkt->virt_hdr.csum_offset = offsetof(struct tcp_hdr, th_sum);
  289. break;
  290. case IP_PROTO_UDP:
  291. if (pkt->payload_len < sizeof(struct udp_hdr)) {
  292. return false;
  293. }
  294. pkt->virt_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
  295. pkt->virt_hdr.csum_start = pkt->hdr_len;
  296. pkt->virt_hdr.csum_offset = offsetof(struct udp_hdr, uh_sum);
  297. break;
  298. default:
  299. break;
  300. }
  301. }
  302. return true;
  303. }
  304. void net_tx_pkt_setup_vlan_header_ex(struct NetTxPkt *pkt,
  305. uint16_t vlan, uint16_t vlan_ethtype)
  306. {
  307. bool is_new;
  308. assert(pkt);
  309. eth_setup_vlan_headers_ex(pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_base,
  310. vlan, vlan_ethtype, &is_new);
  311. /* update l2hdrlen */
  312. if (is_new) {
  313. pkt->hdr_len += sizeof(struct vlan_header);
  314. pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len +=
  315. sizeof(struct vlan_header);
  316. }
  317. }
  318. bool net_tx_pkt_add_raw_fragment(struct NetTxPkt *pkt, hwaddr pa,
  319. size_t len)
  320. {
  321. hwaddr mapped_len = 0;
  322. struct iovec *ventry;
  323. assert(pkt);
  324. if (pkt->raw_frags >= pkt->max_raw_frags) {
  325. return false;
  326. }
  327. if (!len) {
  328. return true;
  329. }
  330. ventry = &pkt->raw[pkt->raw_frags];
  331. mapped_len = len;
  332. ventry->iov_base = pci_dma_map(pkt->pci_dev, pa,
  333. &mapped_len, DMA_DIRECTION_TO_DEVICE);
  334. if ((ventry->iov_base != NULL) && (len == mapped_len)) {
  335. ventry->iov_len = mapped_len;
  336. pkt->raw_frags++;
  337. return true;
  338. } else {
  339. return false;
  340. }
  341. }
  342. bool net_tx_pkt_has_fragments(struct NetTxPkt *pkt)
  343. {
  344. return pkt->raw_frags > 0;
  345. }
  346. eth_pkt_types_e net_tx_pkt_get_packet_type(struct NetTxPkt *pkt)
  347. {
  348. assert(pkt);
  349. return pkt->packet_type;
  350. }
  351. size_t net_tx_pkt_get_total_len(struct NetTxPkt *pkt)
  352. {
  353. assert(pkt);
  354. return pkt->hdr_len + pkt->payload_len;
  355. }
  356. void net_tx_pkt_dump(struct NetTxPkt *pkt)
  357. {
  358. #ifdef NET_TX_PKT_DEBUG
  359. assert(pkt);
  360. printf("TX PKT: hdr_len: %d, pkt_type: 0x%X, l2hdr_len: %lu, "
  361. "l3hdr_len: %lu, payload_len: %u\n", pkt->hdr_len, pkt->packet_type,
  362. pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len,
  363. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len, pkt->payload_len);
  364. #endif
  365. }
  366. void net_tx_pkt_reset(struct NetTxPkt *pkt, PCIDevice *pci_dev)
  367. {
  368. int i;
  369. /* no assert, as reset can be called before tx_pkt_init */
  370. if (!pkt) {
  371. return;
  372. }
  373. memset(&pkt->virt_hdr, 0, sizeof(pkt->virt_hdr));
  374. assert(pkt->vec);
  375. pkt->payload_len = 0;
  376. pkt->payload_frags = 0;
  377. if (pkt->max_raw_frags > 0) {
  378. assert(pkt->raw);
  379. for (i = 0; i < pkt->raw_frags; i++) {
  380. assert(pkt->raw[i].iov_base);
  381. pci_dma_unmap(pkt->pci_dev, pkt->raw[i].iov_base,
  382. pkt->raw[i].iov_len, DMA_DIRECTION_TO_DEVICE, 0);
  383. }
  384. }
  385. pkt->pci_dev = pci_dev;
  386. pkt->raw_frags = 0;
  387. pkt->hdr_len = 0;
  388. pkt->l4proto = 0;
  389. }
  390. static void net_tx_pkt_do_sw_csum(struct NetTxPkt *pkt,
  391. struct iovec *iov, uint32_t iov_len,
  392. uint16_t csl)
  393. {
  394. uint32_t csum_cntr;
  395. uint16_t csum = 0;
  396. uint32_t cso;
  397. /* num of iovec without vhdr */
  398. size_t csum_offset = pkt->virt_hdr.csum_start + pkt->virt_hdr.csum_offset;
  399. uint16_t l3_proto = eth_get_l3_proto(iov, 1, iov->iov_len);
  400. /* Put zero to checksum field */
  401. iov_from_buf(iov, iov_len, csum_offset, &csum, sizeof csum);
  402. /* Calculate L4 TCP/UDP checksum */
  403. csum_cntr = 0;
  404. cso = 0;
  405. /* add pseudo header to csum */
  406. if (l3_proto == ETH_P_IP) {
  407. csum_cntr = eth_calc_ip4_pseudo_hdr_csum(
  408. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base,
  409. csl, &cso);
  410. } else if (l3_proto == ETH_P_IPV6) {
  411. csum_cntr = eth_calc_ip6_pseudo_hdr_csum(
  412. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base,
  413. csl, pkt->l4proto, &cso);
  414. }
  415. /* data checksum */
  416. csum_cntr +=
  417. net_checksum_add_iov(iov, iov_len, pkt->virt_hdr.csum_start, csl, cso);
  418. /* Put the checksum obtained into the packet */
  419. csum = cpu_to_be16(net_checksum_finish_nozero(csum_cntr));
  420. iov_from_buf(iov, iov_len, csum_offset, &csum, sizeof csum);
  421. }
  422. #define NET_MAX_FRAG_SG_LIST (64)
  423. static size_t net_tx_pkt_fetch_fragment(struct NetTxPkt *pkt,
  424. int *src_idx, size_t *src_offset, size_t src_len,
  425. struct iovec *dst, int *dst_idx)
  426. {
  427. size_t fetched = 0;
  428. struct iovec *src = pkt->vec;
  429. while (fetched < src_len) {
  430. /* no more place in fragment iov */
  431. if (*dst_idx == NET_MAX_FRAG_SG_LIST) {
  432. break;
  433. }
  434. /* no more data in iovec */
  435. if (*src_idx == (pkt->payload_frags + NET_TX_PKT_PL_START_FRAG)) {
  436. break;
  437. }
  438. dst[*dst_idx].iov_base = src[*src_idx].iov_base + *src_offset;
  439. dst[*dst_idx].iov_len = MIN(src[*src_idx].iov_len - *src_offset,
  440. src_len - fetched);
  441. *src_offset += dst[*dst_idx].iov_len;
  442. fetched += dst[*dst_idx].iov_len;
  443. if (*src_offset == src[*src_idx].iov_len) {
  444. *src_offset = 0;
  445. (*src_idx)++;
  446. }
  447. (*dst_idx)++;
  448. }
  449. return fetched;
  450. }
  451. static void net_tx_pkt_sendv(
  452. void *opaque, const struct iovec *iov, int iov_cnt,
  453. const struct iovec *virt_iov, int virt_iov_cnt)
  454. {
  455. NetClientState *nc = opaque;
  456. if (qemu_get_using_vnet_hdr(nc->peer)) {
  457. qemu_sendv_packet(nc, virt_iov, virt_iov_cnt);
  458. } else {
  459. qemu_sendv_packet(nc, iov, iov_cnt);
  460. }
  461. }
  462. static bool net_tx_pkt_tcp_fragment_init(struct NetTxPkt *pkt,
  463. struct iovec *fragment,
  464. int *pl_idx,
  465. size_t *l4hdr_len,
  466. int *src_idx,
  467. size_t *src_offset,
  468. size_t *src_len)
  469. {
  470. struct iovec *l4 = fragment + NET_TX_PKT_PL_START_FRAG;
  471. size_t bytes_read = 0;
  472. struct tcp_hdr *th;
  473. if (!pkt->payload_frags) {
  474. return false;
  475. }
  476. l4->iov_len = pkt->virt_hdr.hdr_len - pkt->hdr_len;
  477. l4->iov_base = g_malloc(l4->iov_len);
  478. *src_idx = NET_TX_PKT_PL_START_FRAG;
  479. while (pkt->vec[*src_idx].iov_len < l4->iov_len - bytes_read) {
  480. memcpy((char *)l4->iov_base + bytes_read, pkt->vec[*src_idx].iov_base,
  481. pkt->vec[*src_idx].iov_len);
  482. bytes_read += pkt->vec[*src_idx].iov_len;
  483. (*src_idx)++;
  484. if (*src_idx >= pkt->payload_frags + NET_TX_PKT_PL_START_FRAG) {
  485. g_free(l4->iov_base);
  486. return false;
  487. }
  488. }
  489. *src_offset = l4->iov_len - bytes_read;
  490. memcpy((char *)l4->iov_base + bytes_read, pkt->vec[*src_idx].iov_base,
  491. *src_offset);
  492. th = l4->iov_base;
  493. th->th_flags &= ~(TH_FIN | TH_PUSH);
  494. *pl_idx = NET_TX_PKT_PL_START_FRAG + 1;
  495. *l4hdr_len = l4->iov_len;
  496. *src_len = pkt->virt_hdr.gso_size;
  497. return true;
  498. }
  499. static void net_tx_pkt_tcp_fragment_deinit(struct iovec *fragment)
  500. {
  501. g_free(fragment[NET_TX_PKT_PL_START_FRAG].iov_base);
  502. }
  503. static void net_tx_pkt_tcp_fragment_fix(struct NetTxPkt *pkt,
  504. struct iovec *fragment,
  505. size_t fragment_len,
  506. uint8_t gso_type)
  507. {
  508. struct iovec *l3hdr = fragment + NET_TX_PKT_L3HDR_FRAG;
  509. struct iovec *l4hdr = fragment + NET_TX_PKT_PL_START_FRAG;
  510. struct ip_header *ip = l3hdr->iov_base;
  511. struct ip6_header *ip6 = l3hdr->iov_base;
  512. size_t len = l3hdr->iov_len + l4hdr->iov_len + fragment_len;
  513. switch (gso_type) {
  514. case VIRTIO_NET_HDR_GSO_TCPV4:
  515. ip->ip_len = cpu_to_be16(len);
  516. eth_fix_ip4_checksum(l3hdr->iov_base, l3hdr->iov_len);
  517. break;
  518. case VIRTIO_NET_HDR_GSO_TCPV6:
  519. len -= sizeof(struct ip6_header);
  520. ip6->ip6_ctlun.ip6_un1.ip6_un1_plen = cpu_to_be16(len);
  521. break;
  522. }
  523. }
  524. static void net_tx_pkt_tcp_fragment_advance(struct NetTxPkt *pkt,
  525. struct iovec *fragment,
  526. size_t fragment_len,
  527. uint8_t gso_type)
  528. {
  529. struct iovec *l3hdr = fragment + NET_TX_PKT_L3HDR_FRAG;
  530. struct iovec *l4hdr = fragment + NET_TX_PKT_PL_START_FRAG;
  531. struct ip_header *ip = l3hdr->iov_base;
  532. struct tcp_hdr *th = l4hdr->iov_base;
  533. if (gso_type == VIRTIO_NET_HDR_GSO_TCPV4) {
  534. ip->ip_id = cpu_to_be16(be16_to_cpu(ip->ip_id) + 1);
  535. }
  536. th->th_seq = cpu_to_be32(be32_to_cpu(th->th_seq) + fragment_len);
  537. th->th_flags &= ~TH_CWR;
  538. }
  539. static void net_tx_pkt_udp_fragment_init(struct NetTxPkt *pkt,
  540. int *pl_idx,
  541. size_t *l4hdr_len,
  542. int *src_idx, size_t *src_offset,
  543. size_t *src_len)
  544. {
  545. *pl_idx = NET_TX_PKT_PL_START_FRAG;
  546. *l4hdr_len = 0;
  547. *src_idx = NET_TX_PKT_PL_START_FRAG;
  548. *src_offset = 0;
  549. *src_len = IP_FRAG_ALIGN_SIZE(pkt->virt_hdr.gso_size);
  550. }
  551. static void net_tx_pkt_udp_fragment_fix(struct NetTxPkt *pkt,
  552. struct iovec *fragment,
  553. size_t fragment_offset,
  554. size_t fragment_len)
  555. {
  556. bool more_frags = fragment_offset + fragment_len < pkt->payload_len;
  557. uint16_t orig_flags;
  558. struct iovec *l3hdr = fragment + NET_TX_PKT_L3HDR_FRAG;
  559. struct ip_header *ip = l3hdr->iov_base;
  560. uint16_t frag_off_units = fragment_offset / IP_FRAG_UNIT_SIZE;
  561. uint16_t new_ip_off;
  562. assert(fragment_offset % IP_FRAG_UNIT_SIZE == 0);
  563. assert((frag_off_units & ~IP_OFFMASK) == 0);
  564. orig_flags = be16_to_cpu(ip->ip_off) & ~(IP_OFFMASK | IP_MF);
  565. new_ip_off = frag_off_units | orig_flags | (more_frags ? IP_MF : 0);
  566. ip->ip_off = cpu_to_be16(new_ip_off);
  567. ip->ip_len = cpu_to_be16(l3hdr->iov_len + fragment_len);
  568. eth_fix_ip4_checksum(l3hdr->iov_base, l3hdr->iov_len);
  569. }
  570. static bool net_tx_pkt_do_sw_fragmentation(struct NetTxPkt *pkt,
  571. NetTxPktCallback callback,
  572. void *context)
  573. {
  574. uint8_t gso_type = pkt->virt_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN;
  575. struct iovec fragment[NET_MAX_FRAG_SG_LIST];
  576. size_t fragment_len;
  577. size_t l4hdr_len;
  578. size_t src_len;
  579. int src_idx, dst_idx, pl_idx;
  580. size_t src_offset;
  581. size_t fragment_offset = 0;
  582. struct virtio_net_hdr virt_hdr = {
  583. .flags = pkt->virt_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM ?
  584. VIRTIO_NET_HDR_F_DATA_VALID : 0
  585. };
  586. /* Copy headers */
  587. fragment[NET_TX_PKT_VHDR_FRAG].iov_base = &virt_hdr;
  588. fragment[NET_TX_PKT_VHDR_FRAG].iov_len = sizeof(virt_hdr);
  589. fragment[NET_TX_PKT_L2HDR_FRAG] = pkt->vec[NET_TX_PKT_L2HDR_FRAG];
  590. fragment[NET_TX_PKT_L3HDR_FRAG] = pkt->vec[NET_TX_PKT_L3HDR_FRAG];
  591. switch (gso_type) {
  592. case VIRTIO_NET_HDR_GSO_TCPV4:
  593. case VIRTIO_NET_HDR_GSO_TCPV6:
  594. if (!net_tx_pkt_tcp_fragment_init(pkt, fragment, &pl_idx, &l4hdr_len,
  595. &src_idx, &src_offset, &src_len)) {
  596. return false;
  597. }
  598. break;
  599. case VIRTIO_NET_HDR_GSO_UDP:
  600. net_tx_pkt_do_sw_csum(pkt, &pkt->vec[NET_TX_PKT_L2HDR_FRAG],
  601. pkt->payload_frags + NET_TX_PKT_PL_START_FRAG - 1,
  602. pkt->payload_len);
  603. net_tx_pkt_udp_fragment_init(pkt, &pl_idx, &l4hdr_len,
  604. &src_idx, &src_offset, &src_len);
  605. break;
  606. default:
  607. abort();
  608. }
  609. /* Put as much data as possible and send */
  610. while (true) {
  611. dst_idx = pl_idx;
  612. fragment_len = net_tx_pkt_fetch_fragment(pkt,
  613. &src_idx, &src_offset, src_len, fragment, &dst_idx);
  614. if (!fragment_len) {
  615. break;
  616. }
  617. switch (gso_type) {
  618. case VIRTIO_NET_HDR_GSO_TCPV4:
  619. case VIRTIO_NET_HDR_GSO_TCPV6:
  620. net_tx_pkt_tcp_fragment_fix(pkt, fragment, fragment_len, gso_type);
  621. net_tx_pkt_do_sw_csum(pkt, fragment + NET_TX_PKT_L2HDR_FRAG,
  622. dst_idx - NET_TX_PKT_L2HDR_FRAG,
  623. l4hdr_len + fragment_len);
  624. break;
  625. case VIRTIO_NET_HDR_GSO_UDP:
  626. net_tx_pkt_udp_fragment_fix(pkt, fragment, fragment_offset,
  627. fragment_len);
  628. break;
  629. }
  630. callback(context,
  631. fragment + NET_TX_PKT_L2HDR_FRAG, dst_idx - NET_TX_PKT_L2HDR_FRAG,
  632. fragment + NET_TX_PKT_VHDR_FRAG, dst_idx - NET_TX_PKT_VHDR_FRAG);
  633. if (gso_type == VIRTIO_NET_HDR_GSO_TCPV4 ||
  634. gso_type == VIRTIO_NET_HDR_GSO_TCPV6) {
  635. net_tx_pkt_tcp_fragment_advance(pkt, fragment, fragment_len,
  636. gso_type);
  637. }
  638. fragment_offset += fragment_len;
  639. }
  640. if (gso_type == VIRTIO_NET_HDR_GSO_TCPV4 ||
  641. gso_type == VIRTIO_NET_HDR_GSO_TCPV6) {
  642. net_tx_pkt_tcp_fragment_deinit(fragment);
  643. }
  644. return true;
  645. }
  646. bool net_tx_pkt_send(struct NetTxPkt *pkt, NetClientState *nc)
  647. {
  648. bool offload = qemu_get_using_vnet_hdr(nc->peer);
  649. return net_tx_pkt_send_custom(pkt, offload, net_tx_pkt_sendv, nc);
  650. }
  651. bool net_tx_pkt_send_custom(struct NetTxPkt *pkt, bool offload,
  652. NetTxPktCallback callback, void *context)
  653. {
  654. assert(pkt);
  655. uint8_t gso_type = pkt->virt_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN;
  656. /*
  657. * Since underlying infrastructure does not support IP datagrams longer
  658. * than 64K we should drop such packets and don't even try to send
  659. */
  660. if (VIRTIO_NET_HDR_GSO_NONE != gso_type) {
  661. if (pkt->payload_len >
  662. ETH_MAX_IP_DGRAM_LEN -
  663. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len) {
  664. return false;
  665. }
  666. }
  667. if (offload || gso_type == VIRTIO_NET_HDR_GSO_NONE) {
  668. if (!offload && pkt->virt_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
  669. net_tx_pkt_do_sw_csum(pkt, &pkt->vec[NET_TX_PKT_L2HDR_FRAG],
  670. pkt->payload_frags + NET_TX_PKT_PL_START_FRAG - 1,
  671. pkt->payload_len);
  672. }
  673. net_tx_pkt_fix_ip6_payload_len(pkt);
  674. callback(context, pkt->vec + NET_TX_PKT_L2HDR_FRAG,
  675. pkt->payload_frags + NET_TX_PKT_PL_START_FRAG - NET_TX_PKT_L2HDR_FRAG,
  676. pkt->vec + NET_TX_PKT_VHDR_FRAG,
  677. pkt->payload_frags + NET_TX_PKT_PL_START_FRAG - NET_TX_PKT_VHDR_FRAG);
  678. return true;
  679. }
  680. return net_tx_pkt_do_sw_fragmentation(pkt, callback, context);
  681. }
  682. void net_tx_pkt_fix_ip6_payload_len(struct NetTxPkt *pkt)
  683. {
  684. struct iovec *l2 = &pkt->vec[NET_TX_PKT_L2HDR_FRAG];
  685. if (eth_get_l3_proto(l2, 1, l2->iov_len) == ETH_P_IPV6) {
  686. /*
  687. * TODO: if qemu would support >64K packets - add jumbo option check
  688. * something like that:
  689. * 'if (ip6->ip6_plen == 0 && !has_jumbo_option(ip6)) {'
  690. */
  691. if (pkt->l3_hdr.ip6.ip6_plen == 0) {
  692. if (pkt->payload_len <= ETH_MAX_IP_DGRAM_LEN) {
  693. pkt->l3_hdr.ip6.ip6_plen = htons(pkt->payload_len);
  694. }
  695. /*
  696. * TODO: if qemu would support >64K packets
  697. * add jumbo option for packets greater then 65,535 bytes
  698. */
  699. }
  700. }
  701. }