2
0

zynq_slcr.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637
  1. /*
  2. * Status and system control registers for Xilinx Zynq Platform
  3. *
  4. * Copyright (c) 2011 Michal Simek <monstr@monstr.eu>
  5. * Copyright (c) 2012 PetaLogix Pty Ltd.
  6. * Based on hw/arm_sysctl.c, written by Paul Brook
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. *
  13. * You should have received a copy of the GNU General Public License along
  14. * with this program; if not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #include "qemu/osdep.h"
  17. #include "qemu/timer.h"
  18. #include "sysemu/runstate.h"
  19. #include "hw/sysbus.h"
  20. #include "migration/vmstate.h"
  21. #include "qemu/log.h"
  22. #include "qemu/module.h"
  23. #include "hw/registerfields.h"
  24. #include "hw/qdev-clock.h"
  25. #include "qom/object.h"
  26. #ifndef ZYNQ_SLCR_ERR_DEBUG
  27. #define ZYNQ_SLCR_ERR_DEBUG 0
  28. #endif
  29. #define DB_PRINT(...) do { \
  30. if (ZYNQ_SLCR_ERR_DEBUG) { \
  31. fprintf(stderr, ": %s: ", __func__); \
  32. fprintf(stderr, ## __VA_ARGS__); \
  33. } \
  34. } while (0)
  35. #define XILINX_LOCK_KEY 0x767b
  36. #define XILINX_UNLOCK_KEY 0xdf0d
  37. REG32(SCL, 0x000)
  38. REG32(LOCK, 0x004)
  39. REG32(UNLOCK, 0x008)
  40. REG32(LOCKSTA, 0x00c)
  41. REG32(ARM_PLL_CTRL, 0x100)
  42. REG32(DDR_PLL_CTRL, 0x104)
  43. REG32(IO_PLL_CTRL, 0x108)
  44. /* fields for [ARM|DDR|IO]_PLL_CTRL registers */
  45. FIELD(xxx_PLL_CTRL, PLL_RESET, 0, 1)
  46. FIELD(xxx_PLL_CTRL, PLL_PWRDWN, 1, 1)
  47. FIELD(xxx_PLL_CTRL, PLL_BYPASS_QUAL, 3, 1)
  48. FIELD(xxx_PLL_CTRL, PLL_BYPASS_FORCE, 4, 1)
  49. FIELD(xxx_PLL_CTRL, PLL_FPDIV, 12, 7)
  50. REG32(PLL_STATUS, 0x10c)
  51. REG32(ARM_PLL_CFG, 0x110)
  52. REG32(DDR_PLL_CFG, 0x114)
  53. REG32(IO_PLL_CFG, 0x118)
  54. REG32(ARM_CLK_CTRL, 0x120)
  55. REG32(DDR_CLK_CTRL, 0x124)
  56. REG32(DCI_CLK_CTRL, 0x128)
  57. REG32(APER_CLK_CTRL, 0x12c)
  58. REG32(USB0_CLK_CTRL, 0x130)
  59. REG32(USB1_CLK_CTRL, 0x134)
  60. REG32(GEM0_RCLK_CTRL, 0x138)
  61. REG32(GEM1_RCLK_CTRL, 0x13c)
  62. REG32(GEM0_CLK_CTRL, 0x140)
  63. REG32(GEM1_CLK_CTRL, 0x144)
  64. REG32(SMC_CLK_CTRL, 0x148)
  65. REG32(LQSPI_CLK_CTRL, 0x14c)
  66. REG32(SDIO_CLK_CTRL, 0x150)
  67. REG32(UART_CLK_CTRL, 0x154)
  68. FIELD(UART_CLK_CTRL, CLKACT0, 0, 1)
  69. FIELD(UART_CLK_CTRL, CLKACT1, 1, 1)
  70. FIELD(UART_CLK_CTRL, SRCSEL, 4, 2)
  71. FIELD(UART_CLK_CTRL, DIVISOR, 8, 6)
  72. REG32(SPI_CLK_CTRL, 0x158)
  73. REG32(CAN_CLK_CTRL, 0x15c)
  74. REG32(CAN_MIOCLK_CTRL, 0x160)
  75. REG32(DBG_CLK_CTRL, 0x164)
  76. REG32(PCAP_CLK_CTRL, 0x168)
  77. REG32(TOPSW_CLK_CTRL, 0x16c)
  78. #define FPGA_CTRL_REGS(n, start) \
  79. REG32(FPGA ## n ## _CLK_CTRL, (start)) \
  80. REG32(FPGA ## n ## _THR_CTRL, (start) + 0x4)\
  81. REG32(FPGA ## n ## _THR_CNT, (start) + 0x8)\
  82. REG32(FPGA ## n ## _THR_STA, (start) + 0xc)
  83. FPGA_CTRL_REGS(0, 0x170)
  84. FPGA_CTRL_REGS(1, 0x180)
  85. FPGA_CTRL_REGS(2, 0x190)
  86. FPGA_CTRL_REGS(3, 0x1a0)
  87. REG32(BANDGAP_TRIP, 0x1b8)
  88. REG32(PLL_PREDIVISOR, 0x1c0)
  89. REG32(CLK_621_TRUE, 0x1c4)
  90. REG32(PSS_RST_CTRL, 0x200)
  91. FIELD(PSS_RST_CTRL, SOFT_RST, 0, 1)
  92. REG32(DDR_RST_CTRL, 0x204)
  93. REG32(TOPSW_RESET_CTRL, 0x208)
  94. REG32(DMAC_RST_CTRL, 0x20c)
  95. REG32(USB_RST_CTRL, 0x210)
  96. REG32(GEM_RST_CTRL, 0x214)
  97. REG32(SDIO_RST_CTRL, 0x218)
  98. REG32(SPI_RST_CTRL, 0x21c)
  99. REG32(CAN_RST_CTRL, 0x220)
  100. REG32(I2C_RST_CTRL, 0x224)
  101. REG32(UART_RST_CTRL, 0x228)
  102. REG32(GPIO_RST_CTRL, 0x22c)
  103. REG32(LQSPI_RST_CTRL, 0x230)
  104. REG32(SMC_RST_CTRL, 0x234)
  105. REG32(OCM_RST_CTRL, 0x238)
  106. REG32(FPGA_RST_CTRL, 0x240)
  107. REG32(A9_CPU_RST_CTRL, 0x244)
  108. REG32(RS_AWDT_CTRL, 0x24c)
  109. REG32(RST_REASON, 0x250)
  110. REG32(REBOOT_STATUS, 0x258)
  111. REG32(BOOT_MODE, 0x25c)
  112. REG32(APU_CTRL, 0x300)
  113. REG32(WDT_CLK_SEL, 0x304)
  114. REG32(TZ_DMA_NS, 0x440)
  115. REG32(TZ_DMA_IRQ_NS, 0x444)
  116. REG32(TZ_DMA_PERIPH_NS, 0x448)
  117. REG32(PSS_IDCODE, 0x530)
  118. REG32(DDR_URGENT, 0x600)
  119. REG32(DDR_CAL_START, 0x60c)
  120. REG32(DDR_REF_START, 0x614)
  121. REG32(DDR_CMD_STA, 0x618)
  122. REG32(DDR_URGENT_SEL, 0x61c)
  123. REG32(DDR_DFI_STATUS, 0x620)
  124. REG32(MIO, 0x700)
  125. #define MIO_LENGTH 54
  126. REG32(MIO_LOOPBACK, 0x804)
  127. REG32(MIO_MST_TRI0, 0x808)
  128. REG32(MIO_MST_TRI1, 0x80c)
  129. REG32(SD0_WP_CD_SEL, 0x830)
  130. REG32(SD1_WP_CD_SEL, 0x834)
  131. REG32(LVL_SHFTR_EN, 0x900)
  132. REG32(OCM_CFG, 0x910)
  133. REG32(CPU_RAM, 0xa00)
  134. REG32(IOU, 0xa30)
  135. REG32(DMAC_RAM, 0xa50)
  136. REG32(AFI0, 0xa60)
  137. REG32(AFI1, 0xa6c)
  138. REG32(AFI2, 0xa78)
  139. REG32(AFI3, 0xa84)
  140. #define AFI_LENGTH 3
  141. REG32(OCM, 0xa90)
  142. REG32(DEVCI_RAM, 0xaa0)
  143. REG32(CSG_RAM, 0xab0)
  144. REG32(GPIOB_CTRL, 0xb00)
  145. REG32(GPIOB_CFG_CMOS18, 0xb04)
  146. REG32(GPIOB_CFG_CMOS25, 0xb08)
  147. REG32(GPIOB_CFG_CMOS33, 0xb0c)
  148. REG32(GPIOB_CFG_HSTL, 0xb14)
  149. REG32(GPIOB_DRVR_BIAS_CTRL, 0xb18)
  150. REG32(DDRIOB, 0xb40)
  151. #define DDRIOB_LENGTH 14
  152. #define ZYNQ_SLCR_MMIO_SIZE 0x1000
  153. #define ZYNQ_SLCR_NUM_REGS (ZYNQ_SLCR_MMIO_SIZE / 4)
  154. #define TYPE_ZYNQ_SLCR "xilinx-zynq_slcr"
  155. OBJECT_DECLARE_SIMPLE_TYPE(ZynqSLCRState, ZYNQ_SLCR)
  156. struct ZynqSLCRState {
  157. SysBusDevice parent_obj;
  158. MemoryRegion iomem;
  159. uint32_t regs[ZYNQ_SLCR_NUM_REGS];
  160. Clock *ps_clk;
  161. Clock *uart0_ref_clk;
  162. Clock *uart1_ref_clk;
  163. };
  164. /*
  165. * return the output frequency of ARM/DDR/IO pll
  166. * using input frequency and PLL_CTRL register
  167. */
  168. static uint64_t zynq_slcr_compute_pll(uint64_t input, uint32_t ctrl_reg)
  169. {
  170. uint32_t mult = ((ctrl_reg & R_xxx_PLL_CTRL_PLL_FPDIV_MASK) >>
  171. R_xxx_PLL_CTRL_PLL_FPDIV_SHIFT);
  172. /* first, check if pll is bypassed */
  173. if (ctrl_reg & R_xxx_PLL_CTRL_PLL_BYPASS_FORCE_MASK) {
  174. return input;
  175. }
  176. /* is pll disabled ? */
  177. if (ctrl_reg & (R_xxx_PLL_CTRL_PLL_RESET_MASK |
  178. R_xxx_PLL_CTRL_PLL_PWRDWN_MASK)) {
  179. return 0;
  180. }
  181. /* Consider zero feedback as maximum divide ratio possible */
  182. if (!mult) {
  183. mult = 1 << R_xxx_PLL_CTRL_PLL_FPDIV_LENGTH;
  184. }
  185. /* frequency multiplier -> period division */
  186. return input / mult;
  187. }
  188. /*
  189. * return the output period of a clock given:
  190. * + the periods in an array corresponding to input mux selector
  191. * + the register xxx_CLK_CTRL value
  192. * + enable bit index in ctrl register
  193. *
  194. * This function makes the assumption that the ctrl_reg value is organized as
  195. * follows:
  196. * + bits[13:8] clock frequency divisor
  197. * + bits[5:4] clock mux selector (index in array)
  198. * + bits[index] clock enable
  199. */
  200. static uint64_t zynq_slcr_compute_clock(const uint64_t periods[],
  201. uint32_t ctrl_reg,
  202. unsigned index)
  203. {
  204. uint32_t srcsel = extract32(ctrl_reg, 4, 2); /* bits [5:4] */
  205. uint32_t divisor = extract32(ctrl_reg, 8, 6); /* bits [13:8] */
  206. /* first, check if clock is disabled */
  207. if (((ctrl_reg >> index) & 1u) == 0) {
  208. return 0;
  209. }
  210. /*
  211. * according to the Zynq technical ref. manual UG585 v1.12.2 in
  212. * Clocks chapter, section 25.10.1 page 705:
  213. * "The 6-bit divider provides a divide range of 1 to 63"
  214. * We follow here what is implemented in linux kernel and consider
  215. * the 0 value as a bypass (no division).
  216. */
  217. /* frequency divisor -> period multiplication */
  218. return periods[srcsel] * (divisor ? divisor : 1u);
  219. }
  220. /*
  221. * macro helper around zynq_slcr_compute_clock to avoid repeating
  222. * the register name.
  223. */
  224. #define ZYNQ_COMPUTE_CLK(state, plls, reg, enable_field) \
  225. zynq_slcr_compute_clock((plls), (state)->regs[reg], \
  226. reg ## _ ## enable_field ## _SHIFT)
  227. static void zynq_slcr_compute_clocks_internal(ZynqSLCRState *s, uint64_t ps_clk)
  228. {
  229. uint64_t io_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_IO_PLL_CTRL]);
  230. uint64_t arm_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_ARM_PLL_CTRL]);
  231. uint64_t ddr_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_DDR_PLL_CTRL]);
  232. uint64_t uart_mux[4] = {io_pll, io_pll, arm_pll, ddr_pll};
  233. /* compute uartX reference clocks */
  234. clock_set(s->uart0_ref_clk,
  235. ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT0));
  236. clock_set(s->uart1_ref_clk,
  237. ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT1));
  238. }
  239. /**
  240. * Compute and set the ouputs clocks periods.
  241. * But do not propagate them further. Connected clocks
  242. * will not receive any updates (See zynq_slcr_compute_clocks())
  243. */
  244. static void zynq_slcr_compute_clocks(ZynqSLCRState *s)
  245. {
  246. uint64_t ps_clk = clock_get(s->ps_clk);
  247. /* consider outputs clocks are disabled while in reset */
  248. if (device_is_in_reset(DEVICE(s))) {
  249. ps_clk = 0;
  250. }
  251. zynq_slcr_compute_clocks_internal(s, ps_clk);
  252. }
  253. /**
  254. * Propagate the outputs clocks.
  255. * zynq_slcr_compute_clocks() should have been called before
  256. * to configure them.
  257. */
  258. static void zynq_slcr_propagate_clocks(ZynqSLCRState *s)
  259. {
  260. clock_propagate(s->uart0_ref_clk);
  261. clock_propagate(s->uart1_ref_clk);
  262. }
  263. static void zynq_slcr_ps_clk_callback(void *opaque, ClockEvent event)
  264. {
  265. ZynqSLCRState *s = (ZynqSLCRState *) opaque;
  266. zynq_slcr_compute_clocks(s);
  267. zynq_slcr_propagate_clocks(s);
  268. }
  269. static void zynq_slcr_reset_init(Object *obj, ResetType type)
  270. {
  271. ZynqSLCRState *s = ZYNQ_SLCR(obj);
  272. int i;
  273. DB_PRINT("RESET\n");
  274. s->regs[R_LOCKSTA] = 1;
  275. /* 0x100 - 0x11C */
  276. s->regs[R_ARM_PLL_CTRL] = 0x0001A008;
  277. s->regs[R_DDR_PLL_CTRL] = 0x0001A008;
  278. s->regs[R_IO_PLL_CTRL] = 0x0001A008;
  279. s->regs[R_PLL_STATUS] = 0x0000003F;
  280. s->regs[R_ARM_PLL_CFG] = 0x00014000;
  281. s->regs[R_DDR_PLL_CFG] = 0x00014000;
  282. s->regs[R_IO_PLL_CFG] = 0x00014000;
  283. /* 0x120 - 0x16C */
  284. s->regs[R_ARM_CLK_CTRL] = 0x1F000400;
  285. s->regs[R_DDR_CLK_CTRL] = 0x18400003;
  286. s->regs[R_DCI_CLK_CTRL] = 0x01E03201;
  287. s->regs[R_APER_CLK_CTRL] = 0x01FFCCCD;
  288. s->regs[R_USB0_CLK_CTRL] = s->regs[R_USB1_CLK_CTRL] = 0x00101941;
  289. s->regs[R_GEM0_RCLK_CTRL] = s->regs[R_GEM1_RCLK_CTRL] = 0x00000001;
  290. s->regs[R_GEM0_CLK_CTRL] = s->regs[R_GEM1_CLK_CTRL] = 0x00003C01;
  291. s->regs[R_SMC_CLK_CTRL] = 0x00003C01;
  292. s->regs[R_LQSPI_CLK_CTRL] = 0x00002821;
  293. s->regs[R_SDIO_CLK_CTRL] = 0x00001E03;
  294. s->regs[R_UART_CLK_CTRL] = 0x00003F03;
  295. s->regs[R_SPI_CLK_CTRL] = 0x00003F03;
  296. s->regs[R_CAN_CLK_CTRL] = 0x00501903;
  297. s->regs[R_DBG_CLK_CTRL] = 0x00000F03;
  298. s->regs[R_PCAP_CLK_CTRL] = 0x00000F01;
  299. /* 0x170 - 0x1AC */
  300. s->regs[R_FPGA0_CLK_CTRL] = s->regs[R_FPGA1_CLK_CTRL]
  301. = s->regs[R_FPGA2_CLK_CTRL]
  302. = s->regs[R_FPGA3_CLK_CTRL] = 0x00101800;
  303. s->regs[R_FPGA0_THR_STA] = s->regs[R_FPGA1_THR_STA]
  304. = s->regs[R_FPGA2_THR_STA]
  305. = s->regs[R_FPGA3_THR_STA] = 0x00010000;
  306. /* 0x1B0 - 0x1D8 */
  307. s->regs[R_BANDGAP_TRIP] = 0x0000001F;
  308. s->regs[R_PLL_PREDIVISOR] = 0x00000001;
  309. s->regs[R_CLK_621_TRUE] = 0x00000001;
  310. /* 0x200 - 0x25C */
  311. s->regs[R_FPGA_RST_CTRL] = 0x01F33F0F;
  312. s->regs[R_RST_REASON] = 0x00000040;
  313. s->regs[R_BOOT_MODE] = 0x00000001;
  314. /* 0x700 - 0x7D4 */
  315. for (i = 0; i < 54; i++) {
  316. s->regs[R_MIO + i] = 0x00001601;
  317. }
  318. for (i = 2; i <= 8; i++) {
  319. s->regs[R_MIO + i] = 0x00000601;
  320. }
  321. s->regs[R_MIO_MST_TRI0] = s->regs[R_MIO_MST_TRI1] = 0xFFFFFFFF;
  322. s->regs[R_CPU_RAM + 0] = s->regs[R_CPU_RAM + 1] = s->regs[R_CPU_RAM + 3]
  323. = s->regs[R_CPU_RAM + 4] = s->regs[R_CPU_RAM + 7]
  324. = 0x00010101;
  325. s->regs[R_CPU_RAM + 2] = s->regs[R_CPU_RAM + 5] = 0x01010101;
  326. s->regs[R_CPU_RAM + 6] = 0x00000001;
  327. s->regs[R_IOU + 0] = s->regs[R_IOU + 1] = s->regs[R_IOU + 2]
  328. = s->regs[R_IOU + 3] = 0x09090909;
  329. s->regs[R_IOU + 4] = s->regs[R_IOU + 5] = 0x00090909;
  330. s->regs[R_IOU + 6] = 0x00000909;
  331. s->regs[R_DMAC_RAM] = 0x00000009;
  332. s->regs[R_AFI0 + 0] = s->regs[R_AFI0 + 1] = 0x09090909;
  333. s->regs[R_AFI1 + 0] = s->regs[R_AFI1 + 1] = 0x09090909;
  334. s->regs[R_AFI2 + 0] = s->regs[R_AFI2 + 1] = 0x09090909;
  335. s->regs[R_AFI3 + 0] = s->regs[R_AFI3 + 1] = 0x09090909;
  336. s->regs[R_AFI0 + 2] = s->regs[R_AFI1 + 2] = s->regs[R_AFI2 + 2]
  337. = s->regs[R_AFI3 + 2] = 0x00000909;
  338. s->regs[R_OCM + 0] = 0x01010101;
  339. s->regs[R_OCM + 1] = s->regs[R_OCM + 2] = 0x09090909;
  340. s->regs[R_DEVCI_RAM] = 0x00000909;
  341. s->regs[R_CSG_RAM] = 0x00000001;
  342. s->regs[R_DDRIOB + 0] = s->regs[R_DDRIOB + 1] = s->regs[R_DDRIOB + 2]
  343. = s->regs[R_DDRIOB + 3] = 0x00000e00;
  344. s->regs[R_DDRIOB + 4] = s->regs[R_DDRIOB + 5] = s->regs[R_DDRIOB + 6]
  345. = 0x00000e00;
  346. s->regs[R_DDRIOB + 12] = 0x00000021;
  347. }
  348. static void zynq_slcr_reset_hold(Object *obj)
  349. {
  350. ZynqSLCRState *s = ZYNQ_SLCR(obj);
  351. /* will disable all output clocks */
  352. zynq_slcr_compute_clocks_internal(s, 0);
  353. zynq_slcr_propagate_clocks(s);
  354. }
  355. static void zynq_slcr_reset_exit(Object *obj)
  356. {
  357. ZynqSLCRState *s = ZYNQ_SLCR(obj);
  358. /* will compute output clocks according to ps_clk and registers */
  359. zynq_slcr_compute_clocks_internal(s, clock_get(s->ps_clk));
  360. zynq_slcr_propagate_clocks(s);
  361. }
  362. static bool zynq_slcr_check_offset(hwaddr offset, bool rnw)
  363. {
  364. switch (offset) {
  365. case R_LOCK:
  366. case R_UNLOCK:
  367. case R_DDR_CAL_START:
  368. case R_DDR_REF_START:
  369. return !rnw; /* Write only */
  370. case R_LOCKSTA:
  371. case R_FPGA0_THR_STA:
  372. case R_FPGA1_THR_STA:
  373. case R_FPGA2_THR_STA:
  374. case R_FPGA3_THR_STA:
  375. case R_BOOT_MODE:
  376. case R_PSS_IDCODE:
  377. case R_DDR_CMD_STA:
  378. case R_DDR_DFI_STATUS:
  379. case R_PLL_STATUS:
  380. return rnw;/* read only */
  381. case R_SCL:
  382. case R_ARM_PLL_CTRL ... R_IO_PLL_CTRL:
  383. case R_ARM_PLL_CFG ... R_IO_PLL_CFG:
  384. case R_ARM_CLK_CTRL ... R_TOPSW_CLK_CTRL:
  385. case R_FPGA0_CLK_CTRL ... R_FPGA0_THR_CNT:
  386. case R_FPGA1_CLK_CTRL ... R_FPGA1_THR_CNT:
  387. case R_FPGA2_CLK_CTRL ... R_FPGA2_THR_CNT:
  388. case R_FPGA3_CLK_CTRL ... R_FPGA3_THR_CNT:
  389. case R_BANDGAP_TRIP:
  390. case R_PLL_PREDIVISOR:
  391. case R_CLK_621_TRUE:
  392. case R_PSS_RST_CTRL ... R_A9_CPU_RST_CTRL:
  393. case R_RS_AWDT_CTRL:
  394. case R_RST_REASON:
  395. case R_REBOOT_STATUS:
  396. case R_APU_CTRL:
  397. case R_WDT_CLK_SEL:
  398. case R_TZ_DMA_NS ... R_TZ_DMA_PERIPH_NS:
  399. case R_DDR_URGENT:
  400. case R_DDR_URGENT_SEL:
  401. case R_MIO ... R_MIO + MIO_LENGTH - 1:
  402. case R_MIO_LOOPBACK ... R_MIO_MST_TRI1:
  403. case R_SD0_WP_CD_SEL:
  404. case R_SD1_WP_CD_SEL:
  405. case R_LVL_SHFTR_EN:
  406. case R_OCM_CFG:
  407. case R_CPU_RAM:
  408. case R_IOU:
  409. case R_DMAC_RAM:
  410. case R_AFI0 ... R_AFI3 + AFI_LENGTH - 1:
  411. case R_OCM:
  412. case R_DEVCI_RAM:
  413. case R_CSG_RAM:
  414. case R_GPIOB_CTRL ... R_GPIOB_CFG_CMOS33:
  415. case R_GPIOB_CFG_HSTL:
  416. case R_GPIOB_DRVR_BIAS_CTRL:
  417. case R_DDRIOB ... R_DDRIOB + DDRIOB_LENGTH - 1:
  418. return true;
  419. default:
  420. return false;
  421. }
  422. }
  423. static uint64_t zynq_slcr_read(void *opaque, hwaddr offset,
  424. unsigned size)
  425. {
  426. ZynqSLCRState *s = opaque;
  427. offset /= 4;
  428. uint32_t ret = s->regs[offset];
  429. if (!zynq_slcr_check_offset(offset, true)) {
  430. qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid read access to "
  431. " addr %" HWADDR_PRIx "\n", offset * 4);
  432. }
  433. DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx32 "\n", offset * 4, ret);
  434. return ret;
  435. }
  436. static void zynq_slcr_write(void *opaque, hwaddr offset,
  437. uint64_t val, unsigned size)
  438. {
  439. ZynqSLCRState *s = (ZynqSLCRState *)opaque;
  440. offset /= 4;
  441. DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx64 "\n", offset * 4, val);
  442. if (!zynq_slcr_check_offset(offset, false)) {
  443. qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid write access to "
  444. "addr %" HWADDR_PRIx "\n", offset * 4);
  445. return;
  446. }
  447. switch (offset) {
  448. case R_SCL:
  449. s->regs[R_SCL] = val & 0x1;
  450. return;
  451. case R_LOCK:
  452. if ((val & 0xFFFF) == XILINX_LOCK_KEY) {
  453. DB_PRINT("XILINX LOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset,
  454. (unsigned)val & 0xFFFF);
  455. s->regs[R_LOCKSTA] = 1;
  456. } else {
  457. DB_PRINT("WRONG XILINX LOCK KEY 0xF8000000 + 0x%x <= 0x%x\n",
  458. (int)offset, (unsigned)val & 0xFFFF);
  459. }
  460. return;
  461. case R_UNLOCK:
  462. if ((val & 0xFFFF) == XILINX_UNLOCK_KEY) {
  463. DB_PRINT("XILINX UNLOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset,
  464. (unsigned)val & 0xFFFF);
  465. s->regs[R_LOCKSTA] = 0;
  466. } else {
  467. DB_PRINT("WRONG XILINX UNLOCK KEY 0xF8000000 + 0x%x <= 0x%x\n",
  468. (int)offset, (unsigned)val & 0xFFFF);
  469. }
  470. return;
  471. }
  472. if (s->regs[R_LOCKSTA]) {
  473. qemu_log_mask(LOG_GUEST_ERROR,
  474. "SCLR registers are locked. Unlock them first\n");
  475. return;
  476. }
  477. s->regs[offset] = val;
  478. switch (offset) {
  479. case R_PSS_RST_CTRL:
  480. if (FIELD_EX32(val, PSS_RST_CTRL, SOFT_RST)) {
  481. qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
  482. }
  483. break;
  484. case R_IO_PLL_CTRL:
  485. case R_ARM_PLL_CTRL:
  486. case R_DDR_PLL_CTRL:
  487. case R_UART_CLK_CTRL:
  488. zynq_slcr_compute_clocks(s);
  489. zynq_slcr_propagate_clocks(s);
  490. break;
  491. }
  492. }
  493. static const MemoryRegionOps slcr_ops = {
  494. .read = zynq_slcr_read,
  495. .write = zynq_slcr_write,
  496. .endianness = DEVICE_NATIVE_ENDIAN,
  497. };
  498. static const ClockPortInitArray zynq_slcr_clocks = {
  499. QDEV_CLOCK_IN(ZynqSLCRState, ps_clk, zynq_slcr_ps_clk_callback, ClockUpdate),
  500. QDEV_CLOCK_OUT(ZynqSLCRState, uart0_ref_clk),
  501. QDEV_CLOCK_OUT(ZynqSLCRState, uart1_ref_clk),
  502. QDEV_CLOCK_END
  503. };
  504. static void zynq_slcr_init(Object *obj)
  505. {
  506. ZynqSLCRState *s = ZYNQ_SLCR(obj);
  507. memory_region_init_io(&s->iomem, obj, &slcr_ops, s, "slcr",
  508. ZYNQ_SLCR_MMIO_SIZE);
  509. sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
  510. qdev_init_clocks(DEVICE(obj), zynq_slcr_clocks);
  511. }
  512. static const VMStateDescription vmstate_zynq_slcr = {
  513. .name = "zynq_slcr",
  514. .version_id = 3,
  515. .minimum_version_id = 2,
  516. .fields = (VMStateField[]) {
  517. VMSTATE_UINT32_ARRAY(regs, ZynqSLCRState, ZYNQ_SLCR_NUM_REGS),
  518. VMSTATE_CLOCK_V(ps_clk, ZynqSLCRState, 3),
  519. VMSTATE_END_OF_LIST()
  520. }
  521. };
  522. static void zynq_slcr_class_init(ObjectClass *klass, void *data)
  523. {
  524. DeviceClass *dc = DEVICE_CLASS(klass);
  525. ResettableClass *rc = RESETTABLE_CLASS(klass);
  526. dc->vmsd = &vmstate_zynq_slcr;
  527. rc->phases.enter = zynq_slcr_reset_init;
  528. rc->phases.hold = zynq_slcr_reset_hold;
  529. rc->phases.exit = zynq_slcr_reset_exit;
  530. }
  531. static const TypeInfo zynq_slcr_info = {
  532. .class_init = zynq_slcr_class_init,
  533. .name = TYPE_ZYNQ_SLCR,
  534. .parent = TYPE_SYS_BUS_DEVICE,
  535. .instance_size = sizeof(ZynqSLCRState),
  536. .instance_init = zynq_slcr_init,
  537. };
  538. static void zynq_slcr_register_types(void)
  539. {
  540. type_register_static(&zynq_slcr_info);
  541. }
  542. type_init(zynq_slcr_register_types)