mps2-scc.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396
  1. /*
  2. * ARM MPS2 SCC emulation
  3. *
  4. * Copyright (c) 2017 Linaro Limited
  5. * Written by Peter Maydell
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 or
  9. * (at your option) any later version.
  10. */
  11. /* This is a model of the SCC (Serial Communication Controller)
  12. * found in the FPGA images of MPS2 development boards.
  13. *
  14. * Documentation of it can be found in the MPS2 TRM:
  15. * https://developer.arm.com/documentation/100112/latest/
  16. * and also in the Application Notes documenting individual FPGA images.
  17. */
  18. #include "qemu/osdep.h"
  19. #include "qemu/log.h"
  20. #include "qemu/module.h"
  21. #include "qemu/bitops.h"
  22. #include "trace.h"
  23. #include "hw/sysbus.h"
  24. #include "hw/irq.h"
  25. #include "migration/vmstate.h"
  26. #include "hw/registerfields.h"
  27. #include "hw/misc/mps2-scc.h"
  28. #include "hw/misc/led.h"
  29. #include "hw/qdev-properties.h"
  30. REG32(CFG0, 0)
  31. REG32(CFG1, 4)
  32. REG32(CFG2, 8)
  33. REG32(CFG3, 0xc)
  34. REG32(CFG4, 0x10)
  35. REG32(CFG5, 0x14)
  36. REG32(CFG6, 0x18)
  37. REG32(CFGDATA_RTN, 0xa0)
  38. REG32(CFGDATA_OUT, 0xa4)
  39. REG32(CFGCTRL, 0xa8)
  40. FIELD(CFGCTRL, DEVICE, 0, 12)
  41. FIELD(CFGCTRL, RES1, 12, 8)
  42. FIELD(CFGCTRL, FUNCTION, 20, 6)
  43. FIELD(CFGCTRL, RES2, 26, 4)
  44. FIELD(CFGCTRL, WRITE, 30, 1)
  45. FIELD(CFGCTRL, START, 31, 1)
  46. REG32(CFGSTAT, 0xac)
  47. FIELD(CFGSTAT, DONE, 0, 1)
  48. FIELD(CFGSTAT, ERROR, 1, 1)
  49. REG32(DLL, 0x100)
  50. REG32(AID, 0xFF8)
  51. REG32(ID, 0xFFC)
  52. static int scc_partno(MPS2SCC *s)
  53. {
  54. /* Return the partno field of the SCC_ID (0x524, 0x511, etc) */
  55. return extract32(s->id, 4, 8);
  56. }
  57. /* Handle a write via the SYS_CFG channel to the specified function/device.
  58. * Return false on error (reported to guest via SYS_CFGCTRL ERROR bit).
  59. */
  60. static bool scc_cfg_write(MPS2SCC *s, unsigned function,
  61. unsigned device, uint32_t value)
  62. {
  63. trace_mps2_scc_cfg_write(function, device, value);
  64. if (function != 1 || device >= s->num_oscclk) {
  65. qemu_log_mask(LOG_GUEST_ERROR,
  66. "MPS2 SCC config write: bad function %d device %d\n",
  67. function, device);
  68. return false;
  69. }
  70. s->oscclk[device] = value;
  71. return true;
  72. }
  73. /* Handle a read via the SYS_CFG channel to the specified function/device.
  74. * Return false on error (reported to guest via SYS_CFGCTRL ERROR bit),
  75. * or set *value on success.
  76. */
  77. static bool scc_cfg_read(MPS2SCC *s, unsigned function,
  78. unsigned device, uint32_t *value)
  79. {
  80. if (function != 1 || device >= s->num_oscclk) {
  81. qemu_log_mask(LOG_GUEST_ERROR,
  82. "MPS2 SCC config read: bad function %d device %d\n",
  83. function, device);
  84. return false;
  85. }
  86. *value = s->oscclk[device];
  87. trace_mps2_scc_cfg_read(function, device, *value);
  88. return true;
  89. }
  90. static uint64_t mps2_scc_read(void *opaque, hwaddr offset, unsigned size)
  91. {
  92. MPS2SCC *s = MPS2_SCC(opaque);
  93. uint64_t r;
  94. switch (offset) {
  95. case A_CFG0:
  96. r = s->cfg0;
  97. break;
  98. case A_CFG1:
  99. r = s->cfg1;
  100. break;
  101. case A_CFG2:
  102. if (scc_partno(s) != 0x524 && scc_partno(s) != 0x547) {
  103. /* CFG2 reserved on other boards */
  104. goto bad_offset;
  105. }
  106. r = s->cfg2;
  107. break;
  108. case A_CFG3:
  109. if (scc_partno(s) == 0x524 && scc_partno(s) == 0x547) {
  110. /* CFG3 reserved on AN524 */
  111. goto bad_offset;
  112. }
  113. /* These are user-settable DIP switches on the board. We don't
  114. * model that, so just return zeroes.
  115. */
  116. r = 0;
  117. break;
  118. case A_CFG4:
  119. r = s->cfg4;
  120. break;
  121. case A_CFG5:
  122. if (scc_partno(s) != 0x524 && scc_partno(s) != 0x547) {
  123. /* CFG5 reserved on other boards */
  124. goto bad_offset;
  125. }
  126. r = s->cfg5;
  127. break;
  128. case A_CFG6:
  129. if (scc_partno(s) != 0x524) {
  130. /* CFG6 reserved on other boards */
  131. goto bad_offset;
  132. }
  133. r = s->cfg6;
  134. break;
  135. case A_CFGDATA_RTN:
  136. r = s->cfgdata_rtn;
  137. break;
  138. case A_CFGDATA_OUT:
  139. r = s->cfgdata_out;
  140. break;
  141. case A_CFGCTRL:
  142. r = s->cfgctrl;
  143. break;
  144. case A_CFGSTAT:
  145. r = s->cfgstat;
  146. break;
  147. case A_DLL:
  148. r = s->dll;
  149. break;
  150. case A_AID:
  151. r = s->aid;
  152. break;
  153. case A_ID:
  154. r = s->id;
  155. break;
  156. default:
  157. bad_offset:
  158. qemu_log_mask(LOG_GUEST_ERROR,
  159. "MPS2 SCC read: bad offset %x\n", (int) offset);
  160. r = 0;
  161. break;
  162. }
  163. trace_mps2_scc_read(offset, r, size);
  164. return r;
  165. }
  166. static void mps2_scc_write(void *opaque, hwaddr offset, uint64_t value,
  167. unsigned size)
  168. {
  169. MPS2SCC *s = MPS2_SCC(opaque);
  170. trace_mps2_scc_write(offset, value, size);
  171. switch (offset) {
  172. case A_CFG0:
  173. /*
  174. * On some boards bit 0 controls board-specific remapping;
  175. * we always reflect bit 0 in the 'remap' GPIO output line,
  176. * and let the board wire it up or not as it chooses.
  177. * TODO on some boards bit 1 is CPU_WAIT.
  178. */
  179. s->cfg0 = value;
  180. qemu_set_irq(s->remap, s->cfg0 & 1);
  181. break;
  182. case A_CFG1:
  183. s->cfg1 = value;
  184. for (size_t i = 0; i < ARRAY_SIZE(s->led); i++) {
  185. led_set_state(s->led[i], extract32(value, i, 1));
  186. }
  187. break;
  188. case A_CFG2:
  189. if (scc_partno(s) != 0x524 && scc_partno(s) != 0x547) {
  190. /* CFG2 reserved on other boards */
  191. goto bad_offset;
  192. }
  193. /* AN524: QSPI Select signal */
  194. s->cfg2 = value;
  195. break;
  196. case A_CFG5:
  197. if (scc_partno(s) != 0x524 && scc_partno(s) != 0x547) {
  198. /* CFG5 reserved on other boards */
  199. goto bad_offset;
  200. }
  201. /* AN524: ACLK frequency in Hz */
  202. s->cfg5 = value;
  203. break;
  204. case A_CFG6:
  205. if (scc_partno(s) != 0x524) {
  206. /* CFG6 reserved on other boards */
  207. goto bad_offset;
  208. }
  209. /* AN524: Clock divider for BRAM */
  210. s->cfg6 = value;
  211. break;
  212. case A_CFGDATA_OUT:
  213. s->cfgdata_out = value;
  214. break;
  215. case A_CFGCTRL:
  216. /* Writing to CFGCTRL clears SYS_CFGSTAT */
  217. s->cfgstat = 0;
  218. s->cfgctrl = value & ~(R_CFGCTRL_RES1_MASK |
  219. R_CFGCTRL_RES2_MASK |
  220. R_CFGCTRL_START_MASK);
  221. if (value & R_CFGCTRL_START_MASK) {
  222. /* Start bit set -- do a read or write (instantaneously) */
  223. int device = extract32(s->cfgctrl, R_CFGCTRL_DEVICE_SHIFT,
  224. R_CFGCTRL_DEVICE_LENGTH);
  225. int function = extract32(s->cfgctrl, R_CFGCTRL_FUNCTION_SHIFT,
  226. R_CFGCTRL_FUNCTION_LENGTH);
  227. s->cfgstat = R_CFGSTAT_DONE_MASK;
  228. if (s->cfgctrl & R_CFGCTRL_WRITE_MASK) {
  229. if (!scc_cfg_write(s, function, device, s->cfgdata_out)) {
  230. s->cfgstat |= R_CFGSTAT_ERROR_MASK;
  231. }
  232. } else {
  233. uint32_t result;
  234. if (!scc_cfg_read(s, function, device, &result)) {
  235. s->cfgstat |= R_CFGSTAT_ERROR_MASK;
  236. } else {
  237. s->cfgdata_rtn = result;
  238. }
  239. }
  240. }
  241. break;
  242. case A_DLL:
  243. /* DLL stands for Digital Locked Loop.
  244. * Bits [31:24] (DLL_LOCK_MASK) are writable, and indicate a
  245. * mask of which of the DLL_LOCKED bits [16:23] should be ORed
  246. * together to determine the ALL_UNMASKED_DLLS_LOCKED bit [0].
  247. * For QEMU, our DLLs are always locked, so we can leave bit 0
  248. * as 1 always and don't need to recalculate it.
  249. */
  250. s->dll = deposit32(s->dll, 24, 8, extract32(value, 24, 8));
  251. break;
  252. default:
  253. bad_offset:
  254. qemu_log_mask(LOG_GUEST_ERROR,
  255. "MPS2 SCC write: bad offset 0x%x\n", (int) offset);
  256. break;
  257. }
  258. }
  259. static const MemoryRegionOps mps2_scc_ops = {
  260. .read = mps2_scc_read,
  261. .write = mps2_scc_write,
  262. .endianness = DEVICE_LITTLE_ENDIAN,
  263. };
  264. static void mps2_scc_reset(DeviceState *dev)
  265. {
  266. MPS2SCC *s = MPS2_SCC(dev);
  267. int i;
  268. trace_mps2_scc_reset();
  269. s->cfg0 = s->cfg0_reset;
  270. s->cfg1 = 0;
  271. s->cfg2 = 0;
  272. s->cfg5 = 0;
  273. s->cfg6 = 0;
  274. s->cfgdata_rtn = 0;
  275. s->cfgdata_out = 0;
  276. s->cfgctrl = 0x100000;
  277. s->cfgstat = 0;
  278. s->dll = 0xffff0001;
  279. for (i = 0; i < s->num_oscclk; i++) {
  280. s->oscclk[i] = s->oscclk_reset[i];
  281. }
  282. for (i = 0; i < ARRAY_SIZE(s->led); i++) {
  283. device_cold_reset(DEVICE(s->led[i]));
  284. }
  285. }
  286. static void mps2_scc_init(Object *obj)
  287. {
  288. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  289. MPS2SCC *s = MPS2_SCC(obj);
  290. memory_region_init_io(&s->iomem, obj, &mps2_scc_ops, s, "mps2-scc", 0x1000);
  291. sysbus_init_mmio(sbd, &s->iomem);
  292. qdev_init_gpio_out_named(DEVICE(obj), &s->remap, "remap", 1);
  293. }
  294. static void mps2_scc_realize(DeviceState *dev, Error **errp)
  295. {
  296. MPS2SCC *s = MPS2_SCC(dev);
  297. for (size_t i = 0; i < ARRAY_SIZE(s->led); i++) {
  298. char *name = g_strdup_printf("SCC LED%zu", i);
  299. s->led[i] = led_create_simple(OBJECT(dev), GPIO_POLARITY_ACTIVE_HIGH,
  300. LED_COLOR_GREEN, name);
  301. g_free(name);
  302. }
  303. s->oscclk = g_new0(uint32_t, s->num_oscclk);
  304. }
  305. static const VMStateDescription mps2_scc_vmstate = {
  306. .name = "mps2-scc",
  307. .version_id = 3,
  308. .minimum_version_id = 3,
  309. .fields = (VMStateField[]) {
  310. VMSTATE_UINT32(cfg0, MPS2SCC),
  311. VMSTATE_UINT32(cfg1, MPS2SCC),
  312. VMSTATE_UINT32(cfg2, MPS2SCC),
  313. /* cfg3, cfg4 are read-only so need not be migrated */
  314. VMSTATE_UINT32(cfg5, MPS2SCC),
  315. VMSTATE_UINT32(cfg6, MPS2SCC),
  316. VMSTATE_UINT32(cfgdata_rtn, MPS2SCC),
  317. VMSTATE_UINT32(cfgdata_out, MPS2SCC),
  318. VMSTATE_UINT32(cfgctrl, MPS2SCC),
  319. VMSTATE_UINT32(cfgstat, MPS2SCC),
  320. VMSTATE_UINT32(dll, MPS2SCC),
  321. VMSTATE_VARRAY_UINT32(oscclk, MPS2SCC, num_oscclk,
  322. 0, vmstate_info_uint32, uint32_t),
  323. VMSTATE_END_OF_LIST()
  324. }
  325. };
  326. static Property mps2_scc_properties[] = {
  327. /* Values for various read-only ID registers (which are specific
  328. * to the board model or FPGA image)
  329. */
  330. DEFINE_PROP_UINT32("scc-cfg4", MPS2SCC, cfg4, 0),
  331. DEFINE_PROP_UINT32("scc-aid", MPS2SCC, aid, 0),
  332. DEFINE_PROP_UINT32("scc-id", MPS2SCC, id, 0),
  333. /* Reset value for CFG0 register */
  334. DEFINE_PROP_UINT32("scc-cfg0", MPS2SCC, cfg0_reset, 0),
  335. /*
  336. * These are the initial settings for the source clocks on the board.
  337. * In hardware they can be configured via a config file read by the
  338. * motherboard configuration controller to suit the FPGA image.
  339. */
  340. DEFINE_PROP_ARRAY("oscclk", MPS2SCC, num_oscclk, oscclk_reset,
  341. qdev_prop_uint32, uint32_t),
  342. DEFINE_PROP_END_OF_LIST(),
  343. };
  344. static void mps2_scc_class_init(ObjectClass *klass, void *data)
  345. {
  346. DeviceClass *dc = DEVICE_CLASS(klass);
  347. dc->realize = mps2_scc_realize;
  348. dc->vmsd = &mps2_scc_vmstate;
  349. dc->reset = mps2_scc_reset;
  350. device_class_set_props(dc, mps2_scc_properties);
  351. }
  352. static const TypeInfo mps2_scc_info = {
  353. .name = TYPE_MPS2_SCC,
  354. .parent = TYPE_SYS_BUS_DEVICE,
  355. .instance_size = sizeof(MPS2SCC),
  356. .instance_init = mps2_scc_init,
  357. .class_init = mps2_scc_class_init,
  358. };
  359. static void mps2_scc_register_types(void)
  360. {
  361. type_register_static(&mps2_scc_info);
  362. }
  363. type_init(mps2_scc_register_types);