2
0

iotkit-sysctl.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871
  1. /*
  2. * ARM IoTKit system control element
  3. *
  4. * Copyright (c) 2018 Linaro Limited
  5. * Written by Peter Maydell
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 or
  9. * (at your option) any later version.
  10. */
  11. /*
  12. * This is a model of the "system control element" which is part of the
  13. * Arm IoTKit and documented in
  14. * https://developer.arm.com/documentation/ecm0601256/latest
  15. * Specifically, it implements the "system control register" blocks.
  16. */
  17. #include "qemu/osdep.h"
  18. #include "qemu/bitops.h"
  19. #include "qemu/log.h"
  20. #include "qemu/module.h"
  21. #include "sysemu/runstate.h"
  22. #include "trace.h"
  23. #include "qapi/error.h"
  24. #include "hw/sysbus.h"
  25. #include "migration/vmstate.h"
  26. #include "hw/registerfields.h"
  27. #include "hw/misc/iotkit-sysctl.h"
  28. #include "hw/qdev-properties.h"
  29. #include "hw/arm/armsse-version.h"
  30. #include "target/arm/arm-powerctl.h"
  31. REG32(SECDBGSTAT, 0x0)
  32. REG32(SECDBGSET, 0x4)
  33. REG32(SECDBGCLR, 0x8)
  34. REG32(SCSECCTRL, 0xc)
  35. REG32(FCLK_DIV, 0x10)
  36. REG32(SYSCLK_DIV, 0x14)
  37. REG32(CLOCK_FORCE, 0x18)
  38. REG32(RESET_SYNDROME, 0x100)
  39. REG32(RESET_MASK, 0x104)
  40. REG32(SWRESET, 0x108)
  41. FIELD(SWRESET, SWRESETREQ, 9, 1)
  42. REG32(GRETREG, 0x10c)
  43. REG32(INITSVTOR0, 0x110)
  44. FIELD(INITSVTOR0, LOCK, 0, 1)
  45. FIELD(INITSVTOR0, VTOR, 7, 25)
  46. REG32(INITSVTOR1, 0x114)
  47. REG32(CPUWAIT, 0x118)
  48. REG32(NMI_ENABLE, 0x11c) /* BUSWAIT in IoTKit */
  49. REG32(WICCTRL, 0x120)
  50. REG32(EWCTRL, 0x124)
  51. REG32(PWRCTRL, 0x1fc)
  52. FIELD(PWRCTRL, PPU_ACCESS_UNLOCK, 0, 1)
  53. FIELD(PWRCTRL, PPU_ACCESS_FILTER, 1, 1)
  54. REG32(PDCM_PD_SYS_SENSE, 0x200)
  55. REG32(PDCM_PD_CPU0_SENSE, 0x204)
  56. REG32(PDCM_PD_SRAM0_SENSE, 0x20c)
  57. REG32(PDCM_PD_SRAM1_SENSE, 0x210)
  58. REG32(PDCM_PD_SRAM2_SENSE, 0x214) /* PDCM_PD_VMR0_SENSE on SSE300 */
  59. REG32(PDCM_PD_SRAM3_SENSE, 0x218) /* PDCM_PD_VMR1_SENSE on SSE300 */
  60. REG32(PID4, 0xfd0)
  61. REG32(PID5, 0xfd4)
  62. REG32(PID6, 0xfd8)
  63. REG32(PID7, 0xfdc)
  64. REG32(PID0, 0xfe0)
  65. REG32(PID1, 0xfe4)
  66. REG32(PID2, 0xfe8)
  67. REG32(PID3, 0xfec)
  68. REG32(CID0, 0xff0)
  69. REG32(CID1, 0xff4)
  70. REG32(CID2, 0xff8)
  71. REG32(CID3, 0xffc)
  72. /* PID/CID values */
  73. static const int iotkit_sysctl_id[] = {
  74. 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
  75. 0x54, 0xb8, 0x0b, 0x00, /* PID0..PID3 */
  76. 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
  77. };
  78. /* Also used by the SSE300 */
  79. static const int sse200_sysctl_id[] = {
  80. 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
  81. 0x54, 0xb8, 0x1b, 0x00, /* PID0..PID3 */
  82. 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
  83. };
  84. /*
  85. * Set the initial secure vector table offset address for the core.
  86. * This will take effect when the CPU next resets.
  87. */
  88. static void set_init_vtor(uint64_t cpuid, uint32_t vtor)
  89. {
  90. Object *cpuobj = OBJECT(arm_get_cpu_by_id(cpuid));
  91. if (cpuobj) {
  92. if (object_property_find(cpuobj, "init-svtor")) {
  93. object_property_set_uint(cpuobj, "init-svtor", vtor, &error_abort);
  94. }
  95. }
  96. }
  97. static uint64_t iotkit_sysctl_read(void *opaque, hwaddr offset,
  98. unsigned size)
  99. {
  100. IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque);
  101. uint64_t r;
  102. switch (offset) {
  103. case A_SECDBGSTAT:
  104. r = s->secure_debug;
  105. break;
  106. case A_SCSECCTRL:
  107. switch (s->sse_version) {
  108. case ARMSSE_IOTKIT:
  109. goto bad_offset;
  110. case ARMSSE_SSE200:
  111. case ARMSSE_SSE300:
  112. r = s->scsecctrl;
  113. break;
  114. default:
  115. g_assert_not_reached();
  116. }
  117. break;
  118. case A_FCLK_DIV:
  119. switch (s->sse_version) {
  120. case ARMSSE_IOTKIT:
  121. goto bad_offset;
  122. case ARMSSE_SSE200:
  123. case ARMSSE_SSE300:
  124. r = s->fclk_div;
  125. break;
  126. default:
  127. g_assert_not_reached();
  128. }
  129. break;
  130. case A_SYSCLK_DIV:
  131. switch (s->sse_version) {
  132. case ARMSSE_IOTKIT:
  133. goto bad_offset;
  134. case ARMSSE_SSE200:
  135. case ARMSSE_SSE300:
  136. r = s->sysclk_div;
  137. break;
  138. default:
  139. g_assert_not_reached();
  140. }
  141. break;
  142. case A_CLOCK_FORCE:
  143. switch (s->sse_version) {
  144. case ARMSSE_IOTKIT:
  145. goto bad_offset;
  146. case ARMSSE_SSE200:
  147. case ARMSSE_SSE300:
  148. r = s->clock_force;
  149. break;
  150. default:
  151. g_assert_not_reached();
  152. }
  153. break;
  154. case A_RESET_SYNDROME:
  155. r = s->reset_syndrome;
  156. break;
  157. case A_RESET_MASK:
  158. r = s->reset_mask;
  159. break;
  160. case A_GRETREG:
  161. r = s->gretreg;
  162. break;
  163. case A_INITSVTOR0:
  164. r = s->initsvtor0;
  165. break;
  166. case A_INITSVTOR1:
  167. switch (s->sse_version) {
  168. case ARMSSE_IOTKIT:
  169. goto bad_offset;
  170. case ARMSSE_SSE200:
  171. r = s->initsvtor1;
  172. break;
  173. case ARMSSE_SSE300:
  174. goto bad_offset;
  175. default:
  176. g_assert_not_reached();
  177. }
  178. break;
  179. case A_CPUWAIT:
  180. switch (s->sse_version) {
  181. case ARMSSE_IOTKIT:
  182. case ARMSSE_SSE200:
  183. r = s->cpuwait;
  184. break;
  185. case ARMSSE_SSE300:
  186. /* In SSE300 this is reserved (for INITSVTOR2) */
  187. goto bad_offset;
  188. default:
  189. g_assert_not_reached();
  190. }
  191. break;
  192. case A_NMI_ENABLE:
  193. switch (s->sse_version) {
  194. case ARMSSE_IOTKIT:
  195. /* In IoTKit this is named BUSWAIT but marked reserved, R/O, zero */
  196. r = 0;
  197. break;
  198. case ARMSSE_SSE200:
  199. r = s->nmi_enable;
  200. break;
  201. case ARMSSE_SSE300:
  202. /* In SSE300 this is reserved (for INITSVTOR3) */
  203. goto bad_offset;
  204. default:
  205. g_assert_not_reached();
  206. }
  207. break;
  208. case A_WICCTRL:
  209. switch (s->sse_version) {
  210. case ARMSSE_IOTKIT:
  211. case ARMSSE_SSE200:
  212. r = s->wicctrl;
  213. break;
  214. case ARMSSE_SSE300:
  215. /* In SSE300 this offset is CPUWAIT */
  216. r = s->cpuwait;
  217. break;
  218. default:
  219. g_assert_not_reached();
  220. }
  221. break;
  222. case A_EWCTRL:
  223. switch (s->sse_version) {
  224. case ARMSSE_IOTKIT:
  225. goto bad_offset;
  226. case ARMSSE_SSE200:
  227. r = s->ewctrl;
  228. break;
  229. case ARMSSE_SSE300:
  230. /* In SSE300 this offset is NMI_ENABLE */
  231. r = s->nmi_enable;
  232. break;
  233. default:
  234. g_assert_not_reached();
  235. }
  236. break;
  237. case A_PWRCTRL:
  238. switch (s->sse_version) {
  239. case ARMSSE_IOTKIT:
  240. case ARMSSE_SSE200:
  241. goto bad_offset;
  242. case ARMSSE_SSE300:
  243. r = s->pwrctrl;
  244. break;
  245. default:
  246. g_assert_not_reached();
  247. }
  248. break;
  249. case A_PDCM_PD_SYS_SENSE:
  250. switch (s->sse_version) {
  251. case ARMSSE_IOTKIT:
  252. goto bad_offset;
  253. case ARMSSE_SSE200:
  254. case ARMSSE_SSE300:
  255. r = s->pdcm_pd_sys_sense;
  256. break;
  257. default:
  258. g_assert_not_reached();
  259. }
  260. break;
  261. case A_PDCM_PD_CPU0_SENSE:
  262. switch (s->sse_version) {
  263. case ARMSSE_IOTKIT:
  264. case ARMSSE_SSE200:
  265. goto bad_offset;
  266. case ARMSSE_SSE300:
  267. r = s->pdcm_pd_cpu0_sense;
  268. break;
  269. default:
  270. g_assert_not_reached();
  271. }
  272. break;
  273. case A_PDCM_PD_SRAM0_SENSE:
  274. switch (s->sse_version) {
  275. case ARMSSE_IOTKIT:
  276. goto bad_offset;
  277. case ARMSSE_SSE200:
  278. r = s->pdcm_pd_sram0_sense;
  279. break;
  280. case ARMSSE_SSE300:
  281. goto bad_offset;
  282. default:
  283. g_assert_not_reached();
  284. }
  285. break;
  286. case A_PDCM_PD_SRAM1_SENSE:
  287. switch (s->sse_version) {
  288. case ARMSSE_IOTKIT:
  289. goto bad_offset;
  290. case ARMSSE_SSE200:
  291. r = s->pdcm_pd_sram1_sense;
  292. break;
  293. case ARMSSE_SSE300:
  294. goto bad_offset;
  295. default:
  296. g_assert_not_reached();
  297. }
  298. break;
  299. case A_PDCM_PD_SRAM2_SENSE:
  300. switch (s->sse_version) {
  301. case ARMSSE_IOTKIT:
  302. goto bad_offset;
  303. case ARMSSE_SSE200:
  304. r = s->pdcm_pd_sram2_sense;
  305. break;
  306. case ARMSSE_SSE300:
  307. r = s->pdcm_pd_vmr0_sense;
  308. break;
  309. default:
  310. g_assert_not_reached();
  311. }
  312. break;
  313. case A_PDCM_PD_SRAM3_SENSE:
  314. switch (s->sse_version) {
  315. case ARMSSE_IOTKIT:
  316. goto bad_offset;
  317. case ARMSSE_SSE200:
  318. r = s->pdcm_pd_sram3_sense;
  319. break;
  320. case ARMSSE_SSE300:
  321. r = s->pdcm_pd_vmr1_sense;
  322. break;
  323. default:
  324. g_assert_not_reached();
  325. }
  326. break;
  327. case A_PID4 ... A_CID3:
  328. switch (s->sse_version) {
  329. case ARMSSE_IOTKIT:
  330. r = iotkit_sysctl_id[(offset - A_PID4) / 4];
  331. break;
  332. case ARMSSE_SSE200:
  333. case ARMSSE_SSE300:
  334. r = sse200_sysctl_id[(offset - A_PID4) / 4];
  335. break;
  336. default:
  337. g_assert_not_reached();
  338. }
  339. break;
  340. case A_SECDBGSET:
  341. case A_SECDBGCLR:
  342. case A_SWRESET:
  343. qemu_log_mask(LOG_GUEST_ERROR,
  344. "IoTKit SysCtl read: read of WO offset %x\n",
  345. (int)offset);
  346. r = 0;
  347. break;
  348. default:
  349. bad_offset:
  350. qemu_log_mask(LOG_GUEST_ERROR,
  351. "IoTKit SysCtl read: bad offset %x\n", (int)offset);
  352. r = 0;
  353. break;
  354. }
  355. trace_iotkit_sysctl_read(offset, r, size);
  356. return r;
  357. }
  358. static void cpuwait_write(IoTKitSysCtl *s, uint32_t value)
  359. {
  360. int num_cpus = (s->sse_version == ARMSSE_SSE300) ? 1 : 2;
  361. int i;
  362. for (i = 0; i < num_cpus; i++) {
  363. uint32_t mask = 1 << i;
  364. if ((s->cpuwait & mask) && !(value & mask)) {
  365. /* Powering up CPU 0 */
  366. arm_set_cpu_on_and_reset(i);
  367. }
  368. }
  369. s->cpuwait = value;
  370. }
  371. static void iotkit_sysctl_write(void *opaque, hwaddr offset,
  372. uint64_t value, unsigned size)
  373. {
  374. IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque);
  375. trace_iotkit_sysctl_write(offset, value, size);
  376. /*
  377. * Most of the state here has to do with control of reset and
  378. * similar kinds of power up -- for instance the guest can ask
  379. * what the reason for the last reset was, or forbid reset for
  380. * some causes (like the non-secure watchdog). Most of this is
  381. * not relevant to QEMU, which doesn't really model anything other
  382. * than a full power-on reset.
  383. * We just model the registers as reads-as-written.
  384. */
  385. switch (offset) {
  386. case A_RESET_SYNDROME:
  387. qemu_log_mask(LOG_UNIMP,
  388. "IoTKit SysCtl RESET_SYNDROME unimplemented\n");
  389. s->reset_syndrome = value;
  390. break;
  391. case A_RESET_MASK:
  392. qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl RESET_MASK unimplemented\n");
  393. s->reset_mask = value;
  394. break;
  395. case A_GRETREG:
  396. /*
  397. * General retention register, which is only reset by a power-on
  398. * reset. Technically this implementation is complete, since
  399. * QEMU only supports power-on resets...
  400. */
  401. s->gretreg = value;
  402. break;
  403. case A_INITSVTOR0:
  404. switch (s->sse_version) {
  405. case ARMSSE_SSE300:
  406. /* SSE300 has a LOCK bit which prevents further writes when set */
  407. if (s->initsvtor0 & R_INITSVTOR0_LOCK_MASK) {
  408. qemu_log_mask(LOG_GUEST_ERROR,
  409. "IoTKit INITSVTOR0 write when register locked\n");
  410. break;
  411. }
  412. s->initsvtor0 = value;
  413. set_init_vtor(0, s->initsvtor0 & R_INITSVTOR0_VTOR_MASK);
  414. break;
  415. case ARMSSE_IOTKIT:
  416. case ARMSSE_SSE200:
  417. s->initsvtor0 = value;
  418. set_init_vtor(0, s->initsvtor0);
  419. break;
  420. default:
  421. g_assert_not_reached();
  422. }
  423. break;
  424. case A_CPUWAIT:
  425. switch (s->sse_version) {
  426. case ARMSSE_IOTKIT:
  427. case ARMSSE_SSE200:
  428. cpuwait_write(s, value);
  429. break;
  430. case ARMSSE_SSE300:
  431. /* In SSE300 this is reserved (for INITSVTOR2) */
  432. goto bad_offset;
  433. default:
  434. g_assert_not_reached();
  435. }
  436. break;
  437. case A_WICCTRL:
  438. switch (s->sse_version) {
  439. case ARMSSE_IOTKIT:
  440. case ARMSSE_SSE200:
  441. qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl WICCTRL unimplemented\n");
  442. s->wicctrl = value;
  443. break;
  444. case ARMSSE_SSE300:
  445. /* In SSE300 this offset is CPUWAIT */
  446. cpuwait_write(s, value);
  447. break;
  448. default:
  449. g_assert_not_reached();
  450. }
  451. break;
  452. case A_SECDBGSET:
  453. /* write-1-to-set */
  454. qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl SECDBGSET unimplemented\n");
  455. s->secure_debug |= value;
  456. break;
  457. case A_SECDBGCLR:
  458. /* write-1-to-clear */
  459. s->secure_debug &= ~value;
  460. break;
  461. case A_SWRESET:
  462. /* One w/o bit to request a reset; all other bits reserved */
  463. if (value & R_SWRESET_SWRESETREQ_MASK) {
  464. qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
  465. }
  466. break;
  467. case A_SCSECCTRL:
  468. switch (s->sse_version) {
  469. case ARMSSE_IOTKIT:
  470. goto bad_offset;
  471. case ARMSSE_SSE200:
  472. case ARMSSE_SSE300:
  473. qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl SCSECCTRL unimplemented\n");
  474. s->scsecctrl = value;
  475. break;
  476. default:
  477. g_assert_not_reached();
  478. }
  479. break;
  480. case A_FCLK_DIV:
  481. switch (s->sse_version) {
  482. case ARMSSE_IOTKIT:
  483. goto bad_offset;
  484. case ARMSSE_SSE200:
  485. case ARMSSE_SSE300:
  486. qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl FCLK_DIV unimplemented\n");
  487. s->fclk_div = value;
  488. break;
  489. default:
  490. g_assert_not_reached();
  491. }
  492. break;
  493. case A_SYSCLK_DIV:
  494. switch (s->sse_version) {
  495. case ARMSSE_IOTKIT:
  496. goto bad_offset;
  497. case ARMSSE_SSE200:
  498. case ARMSSE_SSE300:
  499. qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl SYSCLK_DIV unimplemented\n");
  500. s->sysclk_div = value;
  501. break;
  502. default:
  503. g_assert_not_reached();
  504. }
  505. break;
  506. case A_CLOCK_FORCE:
  507. switch (s->sse_version) {
  508. case ARMSSE_IOTKIT:
  509. goto bad_offset;
  510. case ARMSSE_SSE200:
  511. case ARMSSE_SSE300:
  512. qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl CLOCK_FORCE unimplemented\n");
  513. s->clock_force = value;
  514. break;
  515. default:
  516. g_assert_not_reached();
  517. }
  518. break;
  519. case A_INITSVTOR1:
  520. switch (s->sse_version) {
  521. case ARMSSE_IOTKIT:
  522. goto bad_offset;
  523. case ARMSSE_SSE200:
  524. s->initsvtor1 = value;
  525. set_init_vtor(1, s->initsvtor1);
  526. break;
  527. case ARMSSE_SSE300:
  528. goto bad_offset;
  529. default:
  530. g_assert_not_reached();
  531. }
  532. break;
  533. case A_EWCTRL:
  534. switch (s->sse_version) {
  535. case ARMSSE_IOTKIT:
  536. goto bad_offset;
  537. case ARMSSE_SSE200:
  538. qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl EWCTRL unimplemented\n");
  539. s->ewctrl = value;
  540. break;
  541. case ARMSSE_SSE300:
  542. /* In SSE300 this offset is NMI_ENABLE */
  543. qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl NMI_ENABLE unimplemented\n");
  544. s->nmi_enable = value;
  545. break;
  546. default:
  547. g_assert_not_reached();
  548. }
  549. break;
  550. case A_PWRCTRL:
  551. switch (s->sse_version) {
  552. case ARMSSE_IOTKIT:
  553. case ARMSSE_SSE200:
  554. goto bad_offset;
  555. case ARMSSE_SSE300:
  556. if (!(s->pwrctrl & R_PWRCTRL_PPU_ACCESS_UNLOCK_MASK)) {
  557. qemu_log_mask(LOG_GUEST_ERROR,
  558. "IoTKit PWRCTRL write when register locked\n");
  559. break;
  560. }
  561. s->pwrctrl = value;
  562. break;
  563. default:
  564. g_assert_not_reached();
  565. }
  566. break;
  567. case A_PDCM_PD_SYS_SENSE:
  568. switch (s->sse_version) {
  569. case ARMSSE_IOTKIT:
  570. goto bad_offset;
  571. case ARMSSE_SSE200:
  572. case ARMSSE_SSE300:
  573. qemu_log_mask(LOG_UNIMP,
  574. "IoTKit SysCtl PDCM_PD_SYS_SENSE unimplemented\n");
  575. s->pdcm_pd_sys_sense = value;
  576. break;
  577. default:
  578. g_assert_not_reached();
  579. }
  580. break;
  581. case A_PDCM_PD_CPU0_SENSE:
  582. switch (s->sse_version) {
  583. case ARMSSE_IOTKIT:
  584. case ARMSSE_SSE200:
  585. goto bad_offset;
  586. case ARMSSE_SSE300:
  587. qemu_log_mask(LOG_UNIMP,
  588. "IoTKit SysCtl PDCM_PD_CPU0_SENSE unimplemented\n");
  589. s->pdcm_pd_cpu0_sense = value;
  590. break;
  591. default:
  592. g_assert_not_reached();
  593. }
  594. break;
  595. case A_PDCM_PD_SRAM0_SENSE:
  596. switch (s->sse_version) {
  597. case ARMSSE_IOTKIT:
  598. goto bad_offset;
  599. case ARMSSE_SSE200:
  600. qemu_log_mask(LOG_UNIMP,
  601. "IoTKit SysCtl PDCM_PD_SRAM0_SENSE unimplemented\n");
  602. s->pdcm_pd_sram0_sense = value;
  603. break;
  604. case ARMSSE_SSE300:
  605. goto bad_offset;
  606. default:
  607. g_assert_not_reached();
  608. }
  609. break;
  610. case A_PDCM_PD_SRAM1_SENSE:
  611. switch (s->sse_version) {
  612. case ARMSSE_IOTKIT:
  613. goto bad_offset;
  614. case ARMSSE_SSE200:
  615. qemu_log_mask(LOG_UNIMP,
  616. "IoTKit SysCtl PDCM_PD_SRAM1_SENSE unimplemented\n");
  617. s->pdcm_pd_sram1_sense = value;
  618. break;
  619. case ARMSSE_SSE300:
  620. goto bad_offset;
  621. default:
  622. g_assert_not_reached();
  623. }
  624. break;
  625. case A_PDCM_PD_SRAM2_SENSE:
  626. switch (s->sse_version) {
  627. case ARMSSE_IOTKIT:
  628. goto bad_offset;
  629. case ARMSSE_SSE200:
  630. qemu_log_mask(LOG_UNIMP,
  631. "IoTKit SysCtl PDCM_PD_SRAM2_SENSE unimplemented\n");
  632. s->pdcm_pd_sram2_sense = value;
  633. break;
  634. case ARMSSE_SSE300:
  635. qemu_log_mask(LOG_UNIMP,
  636. "IoTKit SysCtl PDCM_PD_VMR0_SENSE unimplemented\n");
  637. s->pdcm_pd_vmr0_sense = value;
  638. break;
  639. default:
  640. g_assert_not_reached();
  641. }
  642. break;
  643. case A_PDCM_PD_SRAM3_SENSE:
  644. switch (s->sse_version) {
  645. case ARMSSE_IOTKIT:
  646. goto bad_offset;
  647. case ARMSSE_SSE200:
  648. qemu_log_mask(LOG_UNIMP,
  649. "IoTKit SysCtl PDCM_PD_SRAM3_SENSE unimplemented\n");
  650. s->pdcm_pd_sram3_sense = value;
  651. break;
  652. case ARMSSE_SSE300:
  653. qemu_log_mask(LOG_UNIMP,
  654. "IoTKit SysCtl PDCM_PD_VMR1_SENSE unimplemented\n");
  655. s->pdcm_pd_vmr1_sense = value;
  656. break;
  657. default:
  658. g_assert_not_reached();
  659. }
  660. break;
  661. case A_NMI_ENABLE:
  662. /* In IoTKit this is BUSWAIT: reserved, R/O, zero */
  663. switch (s->sse_version) {
  664. case ARMSSE_IOTKIT:
  665. goto ro_offset;
  666. case ARMSSE_SSE200:
  667. qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl NMI_ENABLE unimplemented\n");
  668. s->nmi_enable = value;
  669. break;
  670. case ARMSSE_SSE300:
  671. /* In SSE300 this is reserved (for INITSVTOR3) */
  672. goto bad_offset;
  673. default:
  674. g_assert_not_reached();
  675. }
  676. break;
  677. case A_SECDBGSTAT:
  678. case A_PID4 ... A_CID3:
  679. ro_offset:
  680. qemu_log_mask(LOG_GUEST_ERROR,
  681. "IoTKit SysCtl write: write of RO offset %x\n",
  682. (int)offset);
  683. break;
  684. default:
  685. bad_offset:
  686. qemu_log_mask(LOG_GUEST_ERROR,
  687. "IoTKit SysCtl write: bad offset %x\n", (int)offset);
  688. break;
  689. }
  690. }
  691. static const MemoryRegionOps iotkit_sysctl_ops = {
  692. .read = iotkit_sysctl_read,
  693. .write = iotkit_sysctl_write,
  694. .endianness = DEVICE_LITTLE_ENDIAN,
  695. /* byte/halfword accesses are just zero-padded on reads and writes */
  696. .impl.min_access_size = 4,
  697. .impl.max_access_size = 4,
  698. .valid.min_access_size = 1,
  699. .valid.max_access_size = 4,
  700. };
  701. static void iotkit_sysctl_reset(DeviceState *dev)
  702. {
  703. IoTKitSysCtl *s = IOTKIT_SYSCTL(dev);
  704. trace_iotkit_sysctl_reset();
  705. s->secure_debug = 0;
  706. s->reset_syndrome = 1;
  707. s->reset_mask = 0;
  708. s->gretreg = 0;
  709. s->initsvtor0 = s->initsvtor0_rst;
  710. s->initsvtor1 = s->initsvtor1_rst;
  711. s->cpuwait = s->cpuwait_rst;
  712. s->wicctrl = 0;
  713. s->scsecctrl = 0;
  714. s->fclk_div = 0;
  715. s->sysclk_div = 0;
  716. s->clock_force = 0;
  717. s->nmi_enable = 0;
  718. s->ewctrl = 0;
  719. s->pwrctrl = 0x3;
  720. s->pdcm_pd_sys_sense = 0x7f;
  721. s->pdcm_pd_sram0_sense = 0;
  722. s->pdcm_pd_sram1_sense = 0;
  723. s->pdcm_pd_sram2_sense = 0;
  724. s->pdcm_pd_sram3_sense = 0;
  725. s->pdcm_pd_cpu0_sense = 0;
  726. s->pdcm_pd_vmr0_sense = 0;
  727. s->pdcm_pd_vmr1_sense = 0;
  728. }
  729. static void iotkit_sysctl_init(Object *obj)
  730. {
  731. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  732. IoTKitSysCtl *s = IOTKIT_SYSCTL(obj);
  733. memory_region_init_io(&s->iomem, obj, &iotkit_sysctl_ops,
  734. s, "iotkit-sysctl", 0x1000);
  735. sysbus_init_mmio(sbd, &s->iomem);
  736. }
  737. static void iotkit_sysctl_realize(DeviceState *dev, Error **errp)
  738. {
  739. IoTKitSysCtl *s = IOTKIT_SYSCTL(dev);
  740. if (!armsse_version_valid(s->sse_version)) {
  741. error_setg(errp, "invalid sse-version value %d", s->sse_version);
  742. return;
  743. }
  744. }
  745. static bool sse300_needed(void *opaque)
  746. {
  747. IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque);
  748. return s->sse_version == ARMSSE_SSE300;
  749. }
  750. static const VMStateDescription iotkit_sysctl_sse300_vmstate = {
  751. .name = "iotkit-sysctl/sse-300",
  752. .version_id = 1,
  753. .minimum_version_id = 1,
  754. .needed = sse300_needed,
  755. .fields = (VMStateField[]) {
  756. VMSTATE_UINT32(pwrctrl, IoTKitSysCtl),
  757. VMSTATE_UINT32(pdcm_pd_cpu0_sense, IoTKitSysCtl),
  758. VMSTATE_UINT32(pdcm_pd_vmr0_sense, IoTKitSysCtl),
  759. VMSTATE_UINT32(pdcm_pd_vmr1_sense, IoTKitSysCtl),
  760. VMSTATE_END_OF_LIST()
  761. }
  762. };
  763. static bool sse200_needed(void *opaque)
  764. {
  765. IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque);
  766. return s->sse_version != ARMSSE_IOTKIT;
  767. }
  768. static const VMStateDescription iotkit_sysctl_sse200_vmstate = {
  769. .name = "iotkit-sysctl/sse-200",
  770. .version_id = 1,
  771. .minimum_version_id = 1,
  772. .needed = sse200_needed,
  773. .fields = (VMStateField[]) {
  774. VMSTATE_UINT32(scsecctrl, IoTKitSysCtl),
  775. VMSTATE_UINT32(fclk_div, IoTKitSysCtl),
  776. VMSTATE_UINT32(sysclk_div, IoTKitSysCtl),
  777. VMSTATE_UINT32(clock_force, IoTKitSysCtl),
  778. VMSTATE_UINT32(initsvtor1, IoTKitSysCtl),
  779. VMSTATE_UINT32(nmi_enable, IoTKitSysCtl),
  780. VMSTATE_UINT32(pdcm_pd_sys_sense, IoTKitSysCtl),
  781. VMSTATE_UINT32(pdcm_pd_sram0_sense, IoTKitSysCtl),
  782. VMSTATE_UINT32(pdcm_pd_sram1_sense, IoTKitSysCtl),
  783. VMSTATE_UINT32(pdcm_pd_sram2_sense, IoTKitSysCtl),
  784. VMSTATE_UINT32(pdcm_pd_sram3_sense, IoTKitSysCtl),
  785. VMSTATE_END_OF_LIST()
  786. }
  787. };
  788. static const VMStateDescription iotkit_sysctl_vmstate = {
  789. .name = "iotkit-sysctl",
  790. .version_id = 1,
  791. .minimum_version_id = 1,
  792. .fields = (VMStateField[]) {
  793. VMSTATE_UINT32(secure_debug, IoTKitSysCtl),
  794. VMSTATE_UINT32(reset_syndrome, IoTKitSysCtl),
  795. VMSTATE_UINT32(reset_mask, IoTKitSysCtl),
  796. VMSTATE_UINT32(gretreg, IoTKitSysCtl),
  797. VMSTATE_UINT32(initsvtor0, IoTKitSysCtl),
  798. VMSTATE_UINT32(cpuwait, IoTKitSysCtl),
  799. VMSTATE_UINT32(wicctrl, IoTKitSysCtl),
  800. VMSTATE_END_OF_LIST()
  801. },
  802. .subsections = (const VMStateDescription*[]) {
  803. &iotkit_sysctl_sse200_vmstate,
  804. &iotkit_sysctl_sse300_vmstate,
  805. NULL
  806. }
  807. };
  808. static Property iotkit_sysctl_props[] = {
  809. DEFINE_PROP_UINT32("sse-version", IoTKitSysCtl, sse_version, 0),
  810. DEFINE_PROP_UINT32("CPUWAIT_RST", IoTKitSysCtl, cpuwait_rst, 0),
  811. DEFINE_PROP_UINT32("INITSVTOR0_RST", IoTKitSysCtl, initsvtor0_rst,
  812. 0x10000000),
  813. DEFINE_PROP_UINT32("INITSVTOR1_RST", IoTKitSysCtl, initsvtor1_rst,
  814. 0x10000000),
  815. DEFINE_PROP_END_OF_LIST()
  816. };
  817. static void iotkit_sysctl_class_init(ObjectClass *klass, void *data)
  818. {
  819. DeviceClass *dc = DEVICE_CLASS(klass);
  820. dc->vmsd = &iotkit_sysctl_vmstate;
  821. dc->reset = iotkit_sysctl_reset;
  822. device_class_set_props(dc, iotkit_sysctl_props);
  823. dc->realize = iotkit_sysctl_realize;
  824. }
  825. static const TypeInfo iotkit_sysctl_info = {
  826. .name = TYPE_IOTKIT_SYSCTL,
  827. .parent = TYPE_SYS_BUS_DEVICE,
  828. .instance_size = sizeof(IoTKitSysCtl),
  829. .instance_init = iotkit_sysctl_init,
  830. .class_init = iotkit_sysctl_class_init,
  831. };
  832. static void iotkit_sysctl_register_types(void)
  833. {
  834. type_register_static(&iotkit_sysctl_info);
  835. }
  836. type_init(iotkit_sysctl_register_types);