2
0

elfload.c 137 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481
  1. /* This is the Linux kernel elf-loading code, ported into user space */
  2. #include "qemu/osdep.h"
  3. #include <sys/param.h>
  4. #include <sys/resource.h>
  5. #include <sys/shm.h>
  6. #include "qemu.h"
  7. #include "user-internals.h"
  8. #include "signal-common.h"
  9. #include "loader.h"
  10. #include "user-mmap.h"
  11. #include "disas/disas.h"
  12. #include "qemu/bitops.h"
  13. #include "qemu/path.h"
  14. #include "qemu/queue.h"
  15. #include "qemu/guest-random.h"
  16. #include "qemu/units.h"
  17. #include "qemu/selfmap.h"
  18. #include "qapi/error.h"
  19. #include "qemu/error-report.h"
  20. #include "target_signal.h"
  21. #include "accel/tcg/debuginfo.h"
  22. #ifdef _ARCH_PPC64
  23. #undef ARCH_DLINFO
  24. #undef ELF_PLATFORM
  25. #undef ELF_HWCAP
  26. #undef ELF_HWCAP2
  27. #undef ELF_CLASS
  28. #undef ELF_DATA
  29. #undef ELF_ARCH
  30. #endif
  31. #define ELF_OSABI ELFOSABI_SYSV
  32. /* from personality.h */
  33. /*
  34. * Flags for bug emulation.
  35. *
  36. * These occupy the top three bytes.
  37. */
  38. enum {
  39. ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
  40. FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
  41. descriptors (signal handling) */
  42. MMAP_PAGE_ZERO = 0x0100000,
  43. ADDR_COMPAT_LAYOUT = 0x0200000,
  44. READ_IMPLIES_EXEC = 0x0400000,
  45. ADDR_LIMIT_32BIT = 0x0800000,
  46. SHORT_INODE = 0x1000000,
  47. WHOLE_SECONDS = 0x2000000,
  48. STICKY_TIMEOUTS = 0x4000000,
  49. ADDR_LIMIT_3GB = 0x8000000,
  50. };
  51. /*
  52. * Personality types.
  53. *
  54. * These go in the low byte. Avoid using the top bit, it will
  55. * conflict with error returns.
  56. */
  57. enum {
  58. PER_LINUX = 0x0000,
  59. PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
  60. PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
  61. PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
  62. PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
  63. PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
  64. PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
  65. PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
  66. PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
  67. PER_BSD = 0x0006,
  68. PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
  69. PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
  70. PER_LINUX32 = 0x0008,
  71. PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
  72. PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
  73. PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
  74. PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
  75. PER_RISCOS = 0x000c,
  76. PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
  77. PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
  78. PER_OSF4 = 0x000f, /* OSF/1 v4 */
  79. PER_HPUX = 0x0010,
  80. PER_MASK = 0x00ff,
  81. };
  82. /*
  83. * Return the base personality without flags.
  84. */
  85. #define personality(pers) (pers & PER_MASK)
  86. int info_is_fdpic(struct image_info *info)
  87. {
  88. return info->personality == PER_LINUX_FDPIC;
  89. }
  90. /* this flag is uneffective under linux too, should be deleted */
  91. #ifndef MAP_DENYWRITE
  92. #define MAP_DENYWRITE 0
  93. #endif
  94. /* should probably go in elf.h */
  95. #ifndef ELIBBAD
  96. #define ELIBBAD 80
  97. #endif
  98. #if TARGET_BIG_ENDIAN
  99. #define ELF_DATA ELFDATA2MSB
  100. #else
  101. #define ELF_DATA ELFDATA2LSB
  102. #endif
  103. #ifdef TARGET_ABI_MIPSN32
  104. typedef abi_ullong target_elf_greg_t;
  105. #define tswapreg(ptr) tswap64(ptr)
  106. #else
  107. typedef abi_ulong target_elf_greg_t;
  108. #define tswapreg(ptr) tswapal(ptr)
  109. #endif
  110. #ifdef USE_UID16
  111. typedef abi_ushort target_uid_t;
  112. typedef abi_ushort target_gid_t;
  113. #else
  114. typedef abi_uint target_uid_t;
  115. typedef abi_uint target_gid_t;
  116. #endif
  117. typedef abi_int target_pid_t;
  118. #ifdef TARGET_I386
  119. #define ELF_HWCAP get_elf_hwcap()
  120. static uint32_t get_elf_hwcap(void)
  121. {
  122. X86CPU *cpu = X86_CPU(thread_cpu);
  123. return cpu->env.features[FEAT_1_EDX];
  124. }
  125. #ifdef TARGET_X86_64
  126. #define ELF_START_MMAP 0x2aaaaab000ULL
  127. #define ELF_CLASS ELFCLASS64
  128. #define ELF_ARCH EM_X86_64
  129. #define ELF_PLATFORM "x86_64"
  130. static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
  131. {
  132. regs->rax = 0;
  133. regs->rsp = infop->start_stack;
  134. regs->rip = infop->entry;
  135. }
  136. #define ELF_NREG 27
  137. typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
  138. /*
  139. * Note that ELF_NREG should be 29 as there should be place for
  140. * TRAPNO and ERR "registers" as well but linux doesn't dump
  141. * those.
  142. *
  143. * See linux kernel: arch/x86/include/asm/elf.h
  144. */
  145. static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
  146. {
  147. (*regs)[0] = tswapreg(env->regs[15]);
  148. (*regs)[1] = tswapreg(env->regs[14]);
  149. (*regs)[2] = tswapreg(env->regs[13]);
  150. (*regs)[3] = tswapreg(env->regs[12]);
  151. (*regs)[4] = tswapreg(env->regs[R_EBP]);
  152. (*regs)[5] = tswapreg(env->regs[R_EBX]);
  153. (*regs)[6] = tswapreg(env->regs[11]);
  154. (*regs)[7] = tswapreg(env->regs[10]);
  155. (*regs)[8] = tswapreg(env->regs[9]);
  156. (*regs)[9] = tswapreg(env->regs[8]);
  157. (*regs)[10] = tswapreg(env->regs[R_EAX]);
  158. (*regs)[11] = tswapreg(env->regs[R_ECX]);
  159. (*regs)[12] = tswapreg(env->regs[R_EDX]);
  160. (*regs)[13] = tswapreg(env->regs[R_ESI]);
  161. (*regs)[14] = tswapreg(env->regs[R_EDI]);
  162. (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
  163. (*regs)[16] = tswapreg(env->eip);
  164. (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
  165. (*regs)[18] = tswapreg(env->eflags);
  166. (*regs)[19] = tswapreg(env->regs[R_ESP]);
  167. (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
  168. (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
  169. (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
  170. (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
  171. (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
  172. (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
  173. (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
  174. }
  175. #if ULONG_MAX > UINT32_MAX
  176. #define INIT_GUEST_COMMPAGE
  177. static bool init_guest_commpage(void)
  178. {
  179. /*
  180. * The vsyscall page is at a high negative address aka kernel space,
  181. * which means that we cannot actually allocate it with target_mmap.
  182. * We still should be able to use page_set_flags, unless the user
  183. * has specified -R reserved_va, which would trigger an assert().
  184. */
  185. if (reserved_va != 0 &&
  186. TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
  187. error_report("Cannot allocate vsyscall page");
  188. exit(EXIT_FAILURE);
  189. }
  190. page_set_flags(TARGET_VSYSCALL_PAGE,
  191. TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
  192. PAGE_EXEC | PAGE_VALID);
  193. return true;
  194. }
  195. #endif
  196. #else
  197. #define ELF_START_MMAP 0x80000000
  198. /*
  199. * This is used to ensure we don't load something for the wrong architecture.
  200. */
  201. #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
  202. /*
  203. * These are used to set parameters in the core dumps.
  204. */
  205. #define ELF_CLASS ELFCLASS32
  206. #define ELF_ARCH EM_386
  207. #define ELF_PLATFORM get_elf_platform()
  208. #define EXSTACK_DEFAULT true
  209. static const char *get_elf_platform(void)
  210. {
  211. static char elf_platform[] = "i386";
  212. int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
  213. if (family > 6) {
  214. family = 6;
  215. }
  216. if (family >= 3) {
  217. elf_platform[1] = '0' + family;
  218. }
  219. return elf_platform;
  220. }
  221. static inline void init_thread(struct target_pt_regs *regs,
  222. struct image_info *infop)
  223. {
  224. regs->esp = infop->start_stack;
  225. regs->eip = infop->entry;
  226. /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
  227. starts %edx contains a pointer to a function which might be
  228. registered using `atexit'. This provides a mean for the
  229. dynamic linker to call DT_FINI functions for shared libraries
  230. that have been loaded before the code runs.
  231. A value of 0 tells we have no such handler. */
  232. regs->edx = 0;
  233. }
  234. #define ELF_NREG 17
  235. typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
  236. /*
  237. * Note that ELF_NREG should be 19 as there should be place for
  238. * TRAPNO and ERR "registers" as well but linux doesn't dump
  239. * those.
  240. *
  241. * See linux kernel: arch/x86/include/asm/elf.h
  242. */
  243. static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
  244. {
  245. (*regs)[0] = tswapreg(env->regs[R_EBX]);
  246. (*regs)[1] = tswapreg(env->regs[R_ECX]);
  247. (*regs)[2] = tswapreg(env->regs[R_EDX]);
  248. (*regs)[3] = tswapreg(env->regs[R_ESI]);
  249. (*regs)[4] = tswapreg(env->regs[R_EDI]);
  250. (*regs)[5] = tswapreg(env->regs[R_EBP]);
  251. (*regs)[6] = tswapreg(env->regs[R_EAX]);
  252. (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
  253. (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
  254. (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
  255. (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
  256. (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
  257. (*regs)[12] = tswapreg(env->eip);
  258. (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
  259. (*regs)[14] = tswapreg(env->eflags);
  260. (*regs)[15] = tswapreg(env->regs[R_ESP]);
  261. (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
  262. }
  263. #endif
  264. #define USE_ELF_CORE_DUMP
  265. #define ELF_EXEC_PAGESIZE 4096
  266. #endif
  267. #ifdef TARGET_ARM
  268. #ifndef TARGET_AARCH64
  269. /* 32 bit ARM definitions */
  270. #define ELF_START_MMAP 0x80000000
  271. #define ELF_ARCH EM_ARM
  272. #define ELF_CLASS ELFCLASS32
  273. #define EXSTACK_DEFAULT true
  274. static inline void init_thread(struct target_pt_regs *regs,
  275. struct image_info *infop)
  276. {
  277. abi_long stack = infop->start_stack;
  278. memset(regs, 0, sizeof(*regs));
  279. regs->uregs[16] = ARM_CPU_MODE_USR;
  280. if (infop->entry & 1) {
  281. regs->uregs[16] |= CPSR_T;
  282. }
  283. regs->uregs[15] = infop->entry & 0xfffffffe;
  284. regs->uregs[13] = infop->start_stack;
  285. /* FIXME - what to for failure of get_user()? */
  286. get_user_ual(regs->uregs[2], stack + 8); /* envp */
  287. get_user_ual(regs->uregs[1], stack + 4); /* envp */
  288. /* XXX: it seems that r0 is zeroed after ! */
  289. regs->uregs[0] = 0;
  290. /* For uClinux PIC binaries. */
  291. /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
  292. regs->uregs[10] = infop->start_data;
  293. /* Support ARM FDPIC. */
  294. if (info_is_fdpic(infop)) {
  295. /* As described in the ABI document, r7 points to the loadmap info
  296. * prepared by the kernel. If an interpreter is needed, r8 points
  297. * to the interpreter loadmap and r9 points to the interpreter
  298. * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
  299. * r9 points to the main program PT_DYNAMIC info.
  300. */
  301. regs->uregs[7] = infop->loadmap_addr;
  302. if (infop->interpreter_loadmap_addr) {
  303. /* Executable is dynamically loaded. */
  304. regs->uregs[8] = infop->interpreter_loadmap_addr;
  305. regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
  306. } else {
  307. regs->uregs[8] = 0;
  308. regs->uregs[9] = infop->pt_dynamic_addr;
  309. }
  310. }
  311. }
  312. #define ELF_NREG 18
  313. typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
  314. static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
  315. {
  316. (*regs)[0] = tswapreg(env->regs[0]);
  317. (*regs)[1] = tswapreg(env->regs[1]);
  318. (*regs)[2] = tswapreg(env->regs[2]);
  319. (*regs)[3] = tswapreg(env->regs[3]);
  320. (*regs)[4] = tswapreg(env->regs[4]);
  321. (*regs)[5] = tswapreg(env->regs[5]);
  322. (*regs)[6] = tswapreg(env->regs[6]);
  323. (*regs)[7] = tswapreg(env->regs[7]);
  324. (*regs)[8] = tswapreg(env->regs[8]);
  325. (*regs)[9] = tswapreg(env->regs[9]);
  326. (*regs)[10] = tswapreg(env->regs[10]);
  327. (*regs)[11] = tswapreg(env->regs[11]);
  328. (*regs)[12] = tswapreg(env->regs[12]);
  329. (*regs)[13] = tswapreg(env->regs[13]);
  330. (*regs)[14] = tswapreg(env->regs[14]);
  331. (*regs)[15] = tswapreg(env->regs[15]);
  332. (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
  333. (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
  334. }
  335. #define USE_ELF_CORE_DUMP
  336. #define ELF_EXEC_PAGESIZE 4096
  337. enum
  338. {
  339. ARM_HWCAP_ARM_SWP = 1 << 0,
  340. ARM_HWCAP_ARM_HALF = 1 << 1,
  341. ARM_HWCAP_ARM_THUMB = 1 << 2,
  342. ARM_HWCAP_ARM_26BIT = 1 << 3,
  343. ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
  344. ARM_HWCAP_ARM_FPA = 1 << 5,
  345. ARM_HWCAP_ARM_VFP = 1 << 6,
  346. ARM_HWCAP_ARM_EDSP = 1 << 7,
  347. ARM_HWCAP_ARM_JAVA = 1 << 8,
  348. ARM_HWCAP_ARM_IWMMXT = 1 << 9,
  349. ARM_HWCAP_ARM_CRUNCH = 1 << 10,
  350. ARM_HWCAP_ARM_THUMBEE = 1 << 11,
  351. ARM_HWCAP_ARM_NEON = 1 << 12,
  352. ARM_HWCAP_ARM_VFPv3 = 1 << 13,
  353. ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
  354. ARM_HWCAP_ARM_TLS = 1 << 15,
  355. ARM_HWCAP_ARM_VFPv4 = 1 << 16,
  356. ARM_HWCAP_ARM_IDIVA = 1 << 17,
  357. ARM_HWCAP_ARM_IDIVT = 1 << 18,
  358. ARM_HWCAP_ARM_VFPD32 = 1 << 19,
  359. ARM_HWCAP_ARM_LPAE = 1 << 20,
  360. ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
  361. };
  362. enum {
  363. ARM_HWCAP2_ARM_AES = 1 << 0,
  364. ARM_HWCAP2_ARM_PMULL = 1 << 1,
  365. ARM_HWCAP2_ARM_SHA1 = 1 << 2,
  366. ARM_HWCAP2_ARM_SHA2 = 1 << 3,
  367. ARM_HWCAP2_ARM_CRC32 = 1 << 4,
  368. };
  369. /* The commpage only exists for 32 bit kernels */
  370. #define HI_COMMPAGE (intptr_t)0xffff0f00u
  371. static bool init_guest_commpage(void)
  372. {
  373. abi_ptr commpage = HI_COMMPAGE & -qemu_host_page_size;
  374. void *want = g2h_untagged(commpage);
  375. void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
  376. MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
  377. if (addr == MAP_FAILED) {
  378. perror("Allocating guest commpage");
  379. exit(EXIT_FAILURE);
  380. }
  381. if (addr != want) {
  382. return false;
  383. }
  384. /* Set kernel helper versions; rest of page is 0. */
  385. __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
  386. if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
  387. perror("Protecting guest commpage");
  388. exit(EXIT_FAILURE);
  389. }
  390. page_set_flags(commpage, commpage | ~qemu_host_page_mask,
  391. PAGE_READ | PAGE_EXEC | PAGE_VALID);
  392. return true;
  393. }
  394. #define ELF_HWCAP get_elf_hwcap()
  395. #define ELF_HWCAP2 get_elf_hwcap2()
  396. static uint32_t get_elf_hwcap(void)
  397. {
  398. ARMCPU *cpu = ARM_CPU(thread_cpu);
  399. uint32_t hwcaps = 0;
  400. hwcaps |= ARM_HWCAP_ARM_SWP;
  401. hwcaps |= ARM_HWCAP_ARM_HALF;
  402. hwcaps |= ARM_HWCAP_ARM_THUMB;
  403. hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
  404. /* probe for the extra features */
  405. #define GET_FEATURE(feat, hwcap) \
  406. do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
  407. #define GET_FEATURE_ID(feat, hwcap) \
  408. do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
  409. /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
  410. GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
  411. GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
  412. GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
  413. GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
  414. GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
  415. GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
  416. GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
  417. GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
  418. GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
  419. if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
  420. cpu_isar_feature(aa32_fpdp_v3, cpu)) {
  421. hwcaps |= ARM_HWCAP_ARM_VFPv3;
  422. if (cpu_isar_feature(aa32_simd_r32, cpu)) {
  423. hwcaps |= ARM_HWCAP_ARM_VFPD32;
  424. } else {
  425. hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
  426. }
  427. }
  428. GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
  429. return hwcaps;
  430. }
  431. static uint32_t get_elf_hwcap2(void)
  432. {
  433. ARMCPU *cpu = ARM_CPU(thread_cpu);
  434. uint32_t hwcaps = 0;
  435. GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
  436. GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
  437. GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
  438. GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
  439. GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
  440. return hwcaps;
  441. }
  442. #undef GET_FEATURE
  443. #undef GET_FEATURE_ID
  444. #define ELF_PLATFORM get_elf_platform()
  445. static const char *get_elf_platform(void)
  446. {
  447. CPUARMState *env = thread_cpu->env_ptr;
  448. #if TARGET_BIG_ENDIAN
  449. # define END "b"
  450. #else
  451. # define END "l"
  452. #endif
  453. if (arm_feature(env, ARM_FEATURE_V8)) {
  454. return "v8" END;
  455. } else if (arm_feature(env, ARM_FEATURE_V7)) {
  456. if (arm_feature(env, ARM_FEATURE_M)) {
  457. return "v7m" END;
  458. } else {
  459. return "v7" END;
  460. }
  461. } else if (arm_feature(env, ARM_FEATURE_V6)) {
  462. return "v6" END;
  463. } else if (arm_feature(env, ARM_FEATURE_V5)) {
  464. return "v5" END;
  465. } else {
  466. return "v4" END;
  467. }
  468. #undef END
  469. }
  470. #else
  471. /* 64 bit ARM definitions */
  472. #define ELF_START_MMAP 0x80000000
  473. #define ELF_ARCH EM_AARCH64
  474. #define ELF_CLASS ELFCLASS64
  475. #if TARGET_BIG_ENDIAN
  476. # define ELF_PLATFORM "aarch64_be"
  477. #else
  478. # define ELF_PLATFORM "aarch64"
  479. #endif
  480. static inline void init_thread(struct target_pt_regs *regs,
  481. struct image_info *infop)
  482. {
  483. abi_long stack = infop->start_stack;
  484. memset(regs, 0, sizeof(*regs));
  485. regs->pc = infop->entry & ~0x3ULL;
  486. regs->sp = stack;
  487. }
  488. #define ELF_NREG 34
  489. typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
  490. static void elf_core_copy_regs(target_elf_gregset_t *regs,
  491. const CPUARMState *env)
  492. {
  493. int i;
  494. for (i = 0; i < 32; i++) {
  495. (*regs)[i] = tswapreg(env->xregs[i]);
  496. }
  497. (*regs)[32] = tswapreg(env->pc);
  498. (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
  499. }
  500. #define USE_ELF_CORE_DUMP
  501. #define ELF_EXEC_PAGESIZE 4096
  502. enum {
  503. ARM_HWCAP_A64_FP = 1 << 0,
  504. ARM_HWCAP_A64_ASIMD = 1 << 1,
  505. ARM_HWCAP_A64_EVTSTRM = 1 << 2,
  506. ARM_HWCAP_A64_AES = 1 << 3,
  507. ARM_HWCAP_A64_PMULL = 1 << 4,
  508. ARM_HWCAP_A64_SHA1 = 1 << 5,
  509. ARM_HWCAP_A64_SHA2 = 1 << 6,
  510. ARM_HWCAP_A64_CRC32 = 1 << 7,
  511. ARM_HWCAP_A64_ATOMICS = 1 << 8,
  512. ARM_HWCAP_A64_FPHP = 1 << 9,
  513. ARM_HWCAP_A64_ASIMDHP = 1 << 10,
  514. ARM_HWCAP_A64_CPUID = 1 << 11,
  515. ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
  516. ARM_HWCAP_A64_JSCVT = 1 << 13,
  517. ARM_HWCAP_A64_FCMA = 1 << 14,
  518. ARM_HWCAP_A64_LRCPC = 1 << 15,
  519. ARM_HWCAP_A64_DCPOP = 1 << 16,
  520. ARM_HWCAP_A64_SHA3 = 1 << 17,
  521. ARM_HWCAP_A64_SM3 = 1 << 18,
  522. ARM_HWCAP_A64_SM4 = 1 << 19,
  523. ARM_HWCAP_A64_ASIMDDP = 1 << 20,
  524. ARM_HWCAP_A64_SHA512 = 1 << 21,
  525. ARM_HWCAP_A64_SVE = 1 << 22,
  526. ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
  527. ARM_HWCAP_A64_DIT = 1 << 24,
  528. ARM_HWCAP_A64_USCAT = 1 << 25,
  529. ARM_HWCAP_A64_ILRCPC = 1 << 26,
  530. ARM_HWCAP_A64_FLAGM = 1 << 27,
  531. ARM_HWCAP_A64_SSBS = 1 << 28,
  532. ARM_HWCAP_A64_SB = 1 << 29,
  533. ARM_HWCAP_A64_PACA = 1 << 30,
  534. ARM_HWCAP_A64_PACG = 1UL << 31,
  535. ARM_HWCAP2_A64_DCPODP = 1 << 0,
  536. ARM_HWCAP2_A64_SVE2 = 1 << 1,
  537. ARM_HWCAP2_A64_SVEAES = 1 << 2,
  538. ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
  539. ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
  540. ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
  541. ARM_HWCAP2_A64_SVESM4 = 1 << 6,
  542. ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
  543. ARM_HWCAP2_A64_FRINT = 1 << 8,
  544. ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
  545. ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
  546. ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
  547. ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
  548. ARM_HWCAP2_A64_I8MM = 1 << 13,
  549. ARM_HWCAP2_A64_BF16 = 1 << 14,
  550. ARM_HWCAP2_A64_DGH = 1 << 15,
  551. ARM_HWCAP2_A64_RNG = 1 << 16,
  552. ARM_HWCAP2_A64_BTI = 1 << 17,
  553. ARM_HWCAP2_A64_MTE = 1 << 18,
  554. ARM_HWCAP2_A64_ECV = 1 << 19,
  555. ARM_HWCAP2_A64_AFP = 1 << 20,
  556. ARM_HWCAP2_A64_RPRES = 1 << 21,
  557. ARM_HWCAP2_A64_MTE3 = 1 << 22,
  558. ARM_HWCAP2_A64_SME = 1 << 23,
  559. ARM_HWCAP2_A64_SME_I16I64 = 1 << 24,
  560. ARM_HWCAP2_A64_SME_F64F64 = 1 << 25,
  561. ARM_HWCAP2_A64_SME_I8I32 = 1 << 26,
  562. ARM_HWCAP2_A64_SME_F16F32 = 1 << 27,
  563. ARM_HWCAP2_A64_SME_B16F32 = 1 << 28,
  564. ARM_HWCAP2_A64_SME_F32F32 = 1 << 29,
  565. ARM_HWCAP2_A64_SME_FA64 = 1 << 30,
  566. };
  567. #define ELF_HWCAP get_elf_hwcap()
  568. #define ELF_HWCAP2 get_elf_hwcap2()
  569. #define GET_FEATURE_ID(feat, hwcap) \
  570. do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
  571. static uint32_t get_elf_hwcap(void)
  572. {
  573. ARMCPU *cpu = ARM_CPU(thread_cpu);
  574. uint32_t hwcaps = 0;
  575. hwcaps |= ARM_HWCAP_A64_FP;
  576. hwcaps |= ARM_HWCAP_A64_ASIMD;
  577. hwcaps |= ARM_HWCAP_A64_CPUID;
  578. /* probe for the extra features */
  579. GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
  580. GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
  581. GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
  582. GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
  583. GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
  584. GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
  585. GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
  586. GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
  587. GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
  588. GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
  589. GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
  590. GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
  591. GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
  592. GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
  593. GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
  594. GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
  595. GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
  596. GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
  597. GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
  598. GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
  599. GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
  600. GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
  601. GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
  602. return hwcaps;
  603. }
  604. static uint32_t get_elf_hwcap2(void)
  605. {
  606. ARMCPU *cpu = ARM_CPU(thread_cpu);
  607. uint32_t hwcaps = 0;
  608. GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
  609. GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
  610. GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
  611. GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
  612. GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
  613. GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
  614. GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
  615. GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
  616. GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
  617. GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
  618. GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
  619. GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
  620. GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
  621. GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
  622. GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
  623. GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
  624. GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
  625. GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
  626. GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
  627. ARM_HWCAP2_A64_SME_F32F32 |
  628. ARM_HWCAP2_A64_SME_B16F32 |
  629. ARM_HWCAP2_A64_SME_F16F32 |
  630. ARM_HWCAP2_A64_SME_I8I32));
  631. GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
  632. GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
  633. GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
  634. return hwcaps;
  635. }
  636. #undef GET_FEATURE_ID
  637. #endif /* not TARGET_AARCH64 */
  638. #endif /* TARGET_ARM */
  639. #ifdef TARGET_SPARC
  640. #ifdef TARGET_SPARC64
  641. #define ELF_START_MMAP 0x80000000
  642. #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
  643. | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
  644. #ifndef TARGET_ABI32
  645. #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
  646. #else
  647. #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
  648. #endif
  649. #define ELF_CLASS ELFCLASS64
  650. #define ELF_ARCH EM_SPARCV9
  651. #else
  652. #define ELF_START_MMAP 0x80000000
  653. #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
  654. | HWCAP_SPARC_MULDIV)
  655. #define ELF_CLASS ELFCLASS32
  656. #define ELF_ARCH EM_SPARC
  657. #endif /* TARGET_SPARC64 */
  658. static inline void init_thread(struct target_pt_regs *regs,
  659. struct image_info *infop)
  660. {
  661. /* Note that target_cpu_copy_regs does not read psr/tstate. */
  662. regs->pc = infop->entry;
  663. regs->npc = regs->pc + 4;
  664. regs->y = 0;
  665. regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
  666. - TARGET_STACK_BIAS);
  667. }
  668. #endif /* TARGET_SPARC */
  669. #ifdef TARGET_PPC
  670. #define ELF_MACHINE PPC_ELF_MACHINE
  671. #define ELF_START_MMAP 0x80000000
  672. #if defined(TARGET_PPC64)
  673. #define elf_check_arch(x) ( (x) == EM_PPC64 )
  674. #define ELF_CLASS ELFCLASS64
  675. #else
  676. #define ELF_CLASS ELFCLASS32
  677. #define EXSTACK_DEFAULT true
  678. #endif
  679. #define ELF_ARCH EM_PPC
  680. /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
  681. See arch/powerpc/include/asm/cputable.h. */
  682. enum {
  683. QEMU_PPC_FEATURE_32 = 0x80000000,
  684. QEMU_PPC_FEATURE_64 = 0x40000000,
  685. QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
  686. QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
  687. QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
  688. QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
  689. QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
  690. QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
  691. QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
  692. QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
  693. QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
  694. QEMU_PPC_FEATURE_NO_TB = 0x00100000,
  695. QEMU_PPC_FEATURE_POWER4 = 0x00080000,
  696. QEMU_PPC_FEATURE_POWER5 = 0x00040000,
  697. QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
  698. QEMU_PPC_FEATURE_CELL = 0x00010000,
  699. QEMU_PPC_FEATURE_BOOKE = 0x00008000,
  700. QEMU_PPC_FEATURE_SMT = 0x00004000,
  701. QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
  702. QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
  703. QEMU_PPC_FEATURE_PA6T = 0x00000800,
  704. QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
  705. QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
  706. QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
  707. QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
  708. QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
  709. QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
  710. QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
  711. /* Feature definitions in AT_HWCAP2. */
  712. QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
  713. QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
  714. QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
  715. QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
  716. QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
  717. QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
  718. QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
  719. QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
  720. QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
  721. QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
  722. QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
  723. QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
  724. QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
  725. QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
  726. QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
  727. };
  728. #define ELF_HWCAP get_elf_hwcap()
  729. static uint32_t get_elf_hwcap(void)
  730. {
  731. PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
  732. uint32_t features = 0;
  733. /* We don't have to be terribly complete here; the high points are
  734. Altivec/FP/SPE support. Anything else is just a bonus. */
  735. #define GET_FEATURE(flag, feature) \
  736. do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
  737. #define GET_FEATURE2(flags, feature) \
  738. do { \
  739. if ((cpu->env.insns_flags2 & flags) == flags) { \
  740. features |= feature; \
  741. } \
  742. } while (0)
  743. GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
  744. GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
  745. GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
  746. GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
  747. GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
  748. GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
  749. GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
  750. GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
  751. GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
  752. GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
  753. GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
  754. PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
  755. QEMU_PPC_FEATURE_ARCH_2_06);
  756. #undef GET_FEATURE
  757. #undef GET_FEATURE2
  758. return features;
  759. }
  760. #define ELF_HWCAP2 get_elf_hwcap2()
  761. static uint32_t get_elf_hwcap2(void)
  762. {
  763. PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
  764. uint32_t features = 0;
  765. #define GET_FEATURE(flag, feature) \
  766. do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
  767. #define GET_FEATURE2(flag, feature) \
  768. do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
  769. GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
  770. GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
  771. GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
  772. PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
  773. QEMU_PPC_FEATURE2_VEC_CRYPTO);
  774. GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
  775. QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
  776. GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
  777. QEMU_PPC_FEATURE2_MMA);
  778. #undef GET_FEATURE
  779. #undef GET_FEATURE2
  780. return features;
  781. }
  782. /*
  783. * The requirements here are:
  784. * - keep the final alignment of sp (sp & 0xf)
  785. * - make sure the 32-bit value at the first 16 byte aligned position of
  786. * AUXV is greater than 16 for glibc compatibility.
  787. * AT_IGNOREPPC is used for that.
  788. * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
  789. * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
  790. */
  791. #define DLINFO_ARCH_ITEMS 5
  792. #define ARCH_DLINFO \
  793. do { \
  794. PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
  795. /* \
  796. * Handle glibc compatibility: these magic entries must \
  797. * be at the lowest addresses in the final auxv. \
  798. */ \
  799. NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
  800. NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
  801. NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
  802. NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
  803. NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
  804. } while (0)
  805. static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
  806. {
  807. _regs->gpr[1] = infop->start_stack;
  808. #if defined(TARGET_PPC64)
  809. if (get_ppc64_abi(infop) < 2) {
  810. uint64_t val;
  811. get_user_u64(val, infop->entry + 8);
  812. _regs->gpr[2] = val + infop->load_bias;
  813. get_user_u64(val, infop->entry);
  814. infop->entry = val + infop->load_bias;
  815. } else {
  816. _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
  817. }
  818. #endif
  819. _regs->nip = infop->entry;
  820. }
  821. /* See linux kernel: arch/powerpc/include/asm/elf.h. */
  822. #define ELF_NREG 48
  823. typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
  824. static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
  825. {
  826. int i;
  827. target_ulong ccr = 0;
  828. for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
  829. (*regs)[i] = tswapreg(env->gpr[i]);
  830. }
  831. (*regs)[32] = tswapreg(env->nip);
  832. (*regs)[33] = tswapreg(env->msr);
  833. (*regs)[35] = tswapreg(env->ctr);
  834. (*regs)[36] = tswapreg(env->lr);
  835. (*regs)[37] = tswapreg(cpu_read_xer(env));
  836. for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
  837. ccr |= env->crf[i] << (32 - ((i + 1) * 4));
  838. }
  839. (*regs)[38] = tswapreg(ccr);
  840. }
  841. #define USE_ELF_CORE_DUMP
  842. #define ELF_EXEC_PAGESIZE 4096
  843. #endif
  844. #ifdef TARGET_LOONGARCH64
  845. #define ELF_START_MMAP 0x80000000
  846. #define ELF_CLASS ELFCLASS64
  847. #define ELF_ARCH EM_LOONGARCH
  848. #define EXSTACK_DEFAULT true
  849. #define elf_check_arch(x) ((x) == EM_LOONGARCH)
  850. static inline void init_thread(struct target_pt_regs *regs,
  851. struct image_info *infop)
  852. {
  853. /*Set crmd PG,DA = 1,0 */
  854. regs->csr.crmd = 2 << 3;
  855. regs->csr.era = infop->entry;
  856. regs->regs[3] = infop->start_stack;
  857. }
  858. /* See linux kernel: arch/loongarch/include/asm/elf.h */
  859. #define ELF_NREG 45
  860. typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
  861. enum {
  862. TARGET_EF_R0 = 0,
  863. TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
  864. TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
  865. };
  866. static void elf_core_copy_regs(target_elf_gregset_t *regs,
  867. const CPULoongArchState *env)
  868. {
  869. int i;
  870. (*regs)[TARGET_EF_R0] = 0;
  871. for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
  872. (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
  873. }
  874. (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
  875. (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
  876. }
  877. #define USE_ELF_CORE_DUMP
  878. #define ELF_EXEC_PAGESIZE 4096
  879. #define ELF_HWCAP get_elf_hwcap()
  880. /* See arch/loongarch/include/uapi/asm/hwcap.h */
  881. enum {
  882. HWCAP_LOONGARCH_CPUCFG = (1 << 0),
  883. HWCAP_LOONGARCH_LAM = (1 << 1),
  884. HWCAP_LOONGARCH_UAL = (1 << 2),
  885. HWCAP_LOONGARCH_FPU = (1 << 3),
  886. HWCAP_LOONGARCH_LSX = (1 << 4),
  887. HWCAP_LOONGARCH_LASX = (1 << 5),
  888. HWCAP_LOONGARCH_CRC32 = (1 << 6),
  889. HWCAP_LOONGARCH_COMPLEX = (1 << 7),
  890. HWCAP_LOONGARCH_CRYPTO = (1 << 8),
  891. HWCAP_LOONGARCH_LVZ = (1 << 9),
  892. HWCAP_LOONGARCH_LBT_X86 = (1 << 10),
  893. HWCAP_LOONGARCH_LBT_ARM = (1 << 11),
  894. HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
  895. };
  896. static uint32_t get_elf_hwcap(void)
  897. {
  898. LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
  899. uint32_t hwcaps = 0;
  900. hwcaps |= HWCAP_LOONGARCH_CRC32;
  901. if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
  902. hwcaps |= HWCAP_LOONGARCH_UAL;
  903. }
  904. if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
  905. hwcaps |= HWCAP_LOONGARCH_FPU;
  906. }
  907. if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
  908. hwcaps |= HWCAP_LOONGARCH_LAM;
  909. }
  910. return hwcaps;
  911. }
  912. #define ELF_PLATFORM "loongarch"
  913. #endif /* TARGET_LOONGARCH64 */
  914. #ifdef TARGET_MIPS
  915. #define ELF_START_MMAP 0x80000000
  916. #ifdef TARGET_MIPS64
  917. #define ELF_CLASS ELFCLASS64
  918. #else
  919. #define ELF_CLASS ELFCLASS32
  920. #endif
  921. #define ELF_ARCH EM_MIPS
  922. #define EXSTACK_DEFAULT true
  923. #ifdef TARGET_ABI_MIPSN32
  924. #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
  925. #else
  926. #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
  927. #endif
  928. #define ELF_BASE_PLATFORM get_elf_base_platform()
  929. #define MATCH_PLATFORM_INSN(_flags, _base_platform) \
  930. do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
  931. { return _base_platform; } } while (0)
  932. static const char *get_elf_base_platform(void)
  933. {
  934. MIPSCPU *cpu = MIPS_CPU(thread_cpu);
  935. /* 64 bit ISAs goes first */
  936. MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
  937. MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
  938. MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
  939. MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
  940. MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
  941. MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
  942. MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
  943. /* 32 bit ISAs */
  944. MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
  945. MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
  946. MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
  947. MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
  948. MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
  949. /* Fallback */
  950. return "mips";
  951. }
  952. #undef MATCH_PLATFORM_INSN
  953. static inline void init_thread(struct target_pt_regs *regs,
  954. struct image_info *infop)
  955. {
  956. regs->cp0_status = 2 << CP0St_KSU;
  957. regs->cp0_epc = infop->entry;
  958. regs->regs[29] = infop->start_stack;
  959. }
  960. /* See linux kernel: arch/mips/include/asm/elf.h. */
  961. #define ELF_NREG 45
  962. typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
  963. /* See linux kernel: arch/mips/include/asm/reg.h. */
  964. enum {
  965. #ifdef TARGET_MIPS64
  966. TARGET_EF_R0 = 0,
  967. #else
  968. TARGET_EF_R0 = 6,
  969. #endif
  970. TARGET_EF_R26 = TARGET_EF_R0 + 26,
  971. TARGET_EF_R27 = TARGET_EF_R0 + 27,
  972. TARGET_EF_LO = TARGET_EF_R0 + 32,
  973. TARGET_EF_HI = TARGET_EF_R0 + 33,
  974. TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
  975. TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
  976. TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
  977. TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
  978. };
  979. /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
  980. static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
  981. {
  982. int i;
  983. for (i = 0; i < TARGET_EF_R0; i++) {
  984. (*regs)[i] = 0;
  985. }
  986. (*regs)[TARGET_EF_R0] = 0;
  987. for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
  988. (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
  989. }
  990. (*regs)[TARGET_EF_R26] = 0;
  991. (*regs)[TARGET_EF_R27] = 0;
  992. (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
  993. (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
  994. (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
  995. (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
  996. (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
  997. (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
  998. }
  999. #define USE_ELF_CORE_DUMP
  1000. #define ELF_EXEC_PAGESIZE 4096
  1001. /* See arch/mips/include/uapi/asm/hwcap.h. */
  1002. enum {
  1003. HWCAP_MIPS_R6 = (1 << 0),
  1004. HWCAP_MIPS_MSA = (1 << 1),
  1005. HWCAP_MIPS_CRC32 = (1 << 2),
  1006. HWCAP_MIPS_MIPS16 = (1 << 3),
  1007. HWCAP_MIPS_MDMX = (1 << 4),
  1008. HWCAP_MIPS_MIPS3D = (1 << 5),
  1009. HWCAP_MIPS_SMARTMIPS = (1 << 6),
  1010. HWCAP_MIPS_DSP = (1 << 7),
  1011. HWCAP_MIPS_DSP2 = (1 << 8),
  1012. HWCAP_MIPS_DSP3 = (1 << 9),
  1013. HWCAP_MIPS_MIPS16E2 = (1 << 10),
  1014. HWCAP_LOONGSON_MMI = (1 << 11),
  1015. HWCAP_LOONGSON_EXT = (1 << 12),
  1016. HWCAP_LOONGSON_EXT2 = (1 << 13),
  1017. HWCAP_LOONGSON_CPUCFG = (1 << 14),
  1018. };
  1019. #define ELF_HWCAP get_elf_hwcap()
  1020. #define GET_FEATURE_INSN(_flag, _hwcap) \
  1021. do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
  1022. #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
  1023. do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
  1024. #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
  1025. do { \
  1026. if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
  1027. hwcaps |= _hwcap; \
  1028. } \
  1029. } while (0)
  1030. static uint32_t get_elf_hwcap(void)
  1031. {
  1032. MIPSCPU *cpu = MIPS_CPU(thread_cpu);
  1033. uint32_t hwcaps = 0;
  1034. GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
  1035. 2, HWCAP_MIPS_R6);
  1036. GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
  1037. GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
  1038. GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
  1039. return hwcaps;
  1040. }
  1041. #undef GET_FEATURE_REG_EQU
  1042. #undef GET_FEATURE_REG_SET
  1043. #undef GET_FEATURE_INSN
  1044. #endif /* TARGET_MIPS */
  1045. #ifdef TARGET_MICROBLAZE
  1046. #define ELF_START_MMAP 0x80000000
  1047. #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
  1048. #define ELF_CLASS ELFCLASS32
  1049. #define ELF_ARCH EM_MICROBLAZE
  1050. static inline void init_thread(struct target_pt_regs *regs,
  1051. struct image_info *infop)
  1052. {
  1053. regs->pc = infop->entry;
  1054. regs->r1 = infop->start_stack;
  1055. }
  1056. #define ELF_EXEC_PAGESIZE 4096
  1057. #define USE_ELF_CORE_DUMP
  1058. #define ELF_NREG 38
  1059. typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
  1060. /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
  1061. static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
  1062. {
  1063. int i, pos = 0;
  1064. for (i = 0; i < 32; i++) {
  1065. (*regs)[pos++] = tswapreg(env->regs[i]);
  1066. }
  1067. (*regs)[pos++] = tswapreg(env->pc);
  1068. (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
  1069. (*regs)[pos++] = 0;
  1070. (*regs)[pos++] = tswapreg(env->ear);
  1071. (*regs)[pos++] = 0;
  1072. (*regs)[pos++] = tswapreg(env->esr);
  1073. }
  1074. #endif /* TARGET_MICROBLAZE */
  1075. #ifdef TARGET_NIOS2
  1076. #define ELF_START_MMAP 0x80000000
  1077. #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
  1078. #define ELF_CLASS ELFCLASS32
  1079. #define ELF_ARCH EM_ALTERA_NIOS2
  1080. static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
  1081. {
  1082. regs->ea = infop->entry;
  1083. regs->sp = infop->start_stack;
  1084. }
  1085. #define LO_COMMPAGE TARGET_PAGE_SIZE
  1086. static bool init_guest_commpage(void)
  1087. {
  1088. static const uint8_t kuser_page[4 + 2 * 64] = {
  1089. /* __kuser_helper_version */
  1090. [0x00] = 0x02, 0x00, 0x00, 0x00,
  1091. /* __kuser_cmpxchg */
  1092. [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */
  1093. 0x3a, 0x28, 0x00, 0xf8, /* ret */
  1094. /* __kuser_sigtramp */
  1095. [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */
  1096. 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */
  1097. };
  1098. void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
  1099. void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
  1100. MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
  1101. if (addr == MAP_FAILED) {
  1102. perror("Allocating guest commpage");
  1103. exit(EXIT_FAILURE);
  1104. }
  1105. if (addr != want) {
  1106. return false;
  1107. }
  1108. memcpy(addr, kuser_page, sizeof(kuser_page));
  1109. if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
  1110. perror("Protecting guest commpage");
  1111. exit(EXIT_FAILURE);
  1112. }
  1113. page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
  1114. PAGE_READ | PAGE_EXEC | PAGE_VALID);
  1115. return true;
  1116. }
  1117. #define ELF_EXEC_PAGESIZE 4096
  1118. #define USE_ELF_CORE_DUMP
  1119. #define ELF_NREG 49
  1120. typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
  1121. /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
  1122. static void elf_core_copy_regs(target_elf_gregset_t *regs,
  1123. const CPUNios2State *env)
  1124. {
  1125. int i;
  1126. (*regs)[0] = -1;
  1127. for (i = 1; i < 8; i++) /* r0-r7 */
  1128. (*regs)[i] = tswapreg(env->regs[i + 7]);
  1129. for (i = 8; i < 16; i++) /* r8-r15 */
  1130. (*regs)[i] = tswapreg(env->regs[i - 8]);
  1131. for (i = 16; i < 24; i++) /* r16-r23 */
  1132. (*regs)[i] = tswapreg(env->regs[i + 7]);
  1133. (*regs)[24] = -1; /* R_ET */
  1134. (*regs)[25] = -1; /* R_BT */
  1135. (*regs)[26] = tswapreg(env->regs[R_GP]);
  1136. (*regs)[27] = tswapreg(env->regs[R_SP]);
  1137. (*regs)[28] = tswapreg(env->regs[R_FP]);
  1138. (*regs)[29] = tswapreg(env->regs[R_EA]);
  1139. (*regs)[30] = -1; /* R_SSTATUS */
  1140. (*regs)[31] = tswapreg(env->regs[R_RA]);
  1141. (*regs)[32] = tswapreg(env->pc);
  1142. (*regs)[33] = -1; /* R_STATUS */
  1143. (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
  1144. for (i = 35; i < 49; i++) /* ... */
  1145. (*regs)[i] = -1;
  1146. }
  1147. #endif /* TARGET_NIOS2 */
  1148. #ifdef TARGET_OPENRISC
  1149. #define ELF_START_MMAP 0x08000000
  1150. #define ELF_ARCH EM_OPENRISC
  1151. #define ELF_CLASS ELFCLASS32
  1152. #define ELF_DATA ELFDATA2MSB
  1153. static inline void init_thread(struct target_pt_regs *regs,
  1154. struct image_info *infop)
  1155. {
  1156. regs->pc = infop->entry;
  1157. regs->gpr[1] = infop->start_stack;
  1158. }
  1159. #define USE_ELF_CORE_DUMP
  1160. #define ELF_EXEC_PAGESIZE 8192
  1161. /* See linux kernel arch/openrisc/include/asm/elf.h. */
  1162. #define ELF_NREG 34 /* gprs and pc, sr */
  1163. typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
  1164. static void elf_core_copy_regs(target_elf_gregset_t *regs,
  1165. const CPUOpenRISCState *env)
  1166. {
  1167. int i;
  1168. for (i = 0; i < 32; i++) {
  1169. (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
  1170. }
  1171. (*regs)[32] = tswapreg(env->pc);
  1172. (*regs)[33] = tswapreg(cpu_get_sr(env));
  1173. }
  1174. #define ELF_HWCAP 0
  1175. #define ELF_PLATFORM NULL
  1176. #endif /* TARGET_OPENRISC */
  1177. #ifdef TARGET_SH4
  1178. #define ELF_START_MMAP 0x80000000
  1179. #define ELF_CLASS ELFCLASS32
  1180. #define ELF_ARCH EM_SH
  1181. static inline void init_thread(struct target_pt_regs *regs,
  1182. struct image_info *infop)
  1183. {
  1184. /* Check other registers XXXXX */
  1185. regs->pc = infop->entry;
  1186. regs->regs[15] = infop->start_stack;
  1187. }
  1188. /* See linux kernel: arch/sh/include/asm/elf.h. */
  1189. #define ELF_NREG 23
  1190. typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
  1191. /* See linux kernel: arch/sh/include/asm/ptrace.h. */
  1192. enum {
  1193. TARGET_REG_PC = 16,
  1194. TARGET_REG_PR = 17,
  1195. TARGET_REG_SR = 18,
  1196. TARGET_REG_GBR = 19,
  1197. TARGET_REG_MACH = 20,
  1198. TARGET_REG_MACL = 21,
  1199. TARGET_REG_SYSCALL = 22
  1200. };
  1201. static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
  1202. const CPUSH4State *env)
  1203. {
  1204. int i;
  1205. for (i = 0; i < 16; i++) {
  1206. (*regs)[i] = tswapreg(env->gregs[i]);
  1207. }
  1208. (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
  1209. (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
  1210. (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
  1211. (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
  1212. (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
  1213. (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
  1214. (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
  1215. }
  1216. #define USE_ELF_CORE_DUMP
  1217. #define ELF_EXEC_PAGESIZE 4096
  1218. enum {
  1219. SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
  1220. SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
  1221. SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
  1222. SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
  1223. SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
  1224. SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
  1225. SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
  1226. SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
  1227. SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
  1228. SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
  1229. };
  1230. #define ELF_HWCAP get_elf_hwcap()
  1231. static uint32_t get_elf_hwcap(void)
  1232. {
  1233. SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
  1234. uint32_t hwcap = 0;
  1235. hwcap |= SH_CPU_HAS_FPU;
  1236. if (cpu->env.features & SH_FEATURE_SH4A) {
  1237. hwcap |= SH_CPU_HAS_LLSC;
  1238. }
  1239. return hwcap;
  1240. }
  1241. #endif
  1242. #ifdef TARGET_CRIS
  1243. #define ELF_START_MMAP 0x80000000
  1244. #define ELF_CLASS ELFCLASS32
  1245. #define ELF_ARCH EM_CRIS
  1246. static inline void init_thread(struct target_pt_regs *regs,
  1247. struct image_info *infop)
  1248. {
  1249. regs->erp = infop->entry;
  1250. }
  1251. #define ELF_EXEC_PAGESIZE 8192
  1252. #endif
  1253. #ifdef TARGET_M68K
  1254. #define ELF_START_MMAP 0x80000000
  1255. #define ELF_CLASS ELFCLASS32
  1256. #define ELF_ARCH EM_68K
  1257. /* ??? Does this need to do anything?
  1258. #define ELF_PLAT_INIT(_r) */
  1259. static inline void init_thread(struct target_pt_regs *regs,
  1260. struct image_info *infop)
  1261. {
  1262. regs->usp = infop->start_stack;
  1263. regs->sr = 0;
  1264. regs->pc = infop->entry;
  1265. }
  1266. /* See linux kernel: arch/m68k/include/asm/elf.h. */
  1267. #define ELF_NREG 20
  1268. typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
  1269. static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
  1270. {
  1271. (*regs)[0] = tswapreg(env->dregs[1]);
  1272. (*regs)[1] = tswapreg(env->dregs[2]);
  1273. (*regs)[2] = tswapreg(env->dregs[3]);
  1274. (*regs)[3] = tswapreg(env->dregs[4]);
  1275. (*regs)[4] = tswapreg(env->dregs[5]);
  1276. (*regs)[5] = tswapreg(env->dregs[6]);
  1277. (*regs)[6] = tswapreg(env->dregs[7]);
  1278. (*regs)[7] = tswapreg(env->aregs[0]);
  1279. (*regs)[8] = tswapreg(env->aregs[1]);
  1280. (*regs)[9] = tswapreg(env->aregs[2]);
  1281. (*regs)[10] = tswapreg(env->aregs[3]);
  1282. (*regs)[11] = tswapreg(env->aregs[4]);
  1283. (*regs)[12] = tswapreg(env->aregs[5]);
  1284. (*regs)[13] = tswapreg(env->aregs[6]);
  1285. (*regs)[14] = tswapreg(env->dregs[0]);
  1286. (*regs)[15] = tswapreg(env->aregs[7]);
  1287. (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
  1288. (*regs)[17] = tswapreg(env->sr);
  1289. (*regs)[18] = tswapreg(env->pc);
  1290. (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
  1291. }
  1292. #define USE_ELF_CORE_DUMP
  1293. #define ELF_EXEC_PAGESIZE 8192
  1294. #endif
  1295. #ifdef TARGET_ALPHA
  1296. #define ELF_START_MMAP (0x30000000000ULL)
  1297. #define ELF_CLASS ELFCLASS64
  1298. #define ELF_ARCH EM_ALPHA
  1299. static inline void init_thread(struct target_pt_regs *regs,
  1300. struct image_info *infop)
  1301. {
  1302. regs->pc = infop->entry;
  1303. regs->ps = 8;
  1304. regs->usp = infop->start_stack;
  1305. }
  1306. #define ELF_EXEC_PAGESIZE 8192
  1307. #endif /* TARGET_ALPHA */
  1308. #ifdef TARGET_S390X
  1309. #define ELF_START_MMAP (0x20000000000ULL)
  1310. #define ELF_CLASS ELFCLASS64
  1311. #define ELF_DATA ELFDATA2MSB
  1312. #define ELF_ARCH EM_S390
  1313. #include "elf.h"
  1314. #define ELF_HWCAP get_elf_hwcap()
  1315. #define GET_FEATURE(_feat, _hwcap) \
  1316. do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
  1317. static uint32_t get_elf_hwcap(void)
  1318. {
  1319. /*
  1320. * Let's assume we always have esan3 and zarch.
  1321. * 31-bit processes can use 64-bit registers (high gprs).
  1322. */
  1323. uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
  1324. GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
  1325. GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
  1326. GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
  1327. GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
  1328. if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
  1329. s390_has_feat(S390_FEAT_ETF3_ENH)) {
  1330. hwcap |= HWCAP_S390_ETF3EH;
  1331. }
  1332. GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
  1333. GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
  1334. return hwcap;
  1335. }
  1336. static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
  1337. {
  1338. regs->psw.addr = infop->entry;
  1339. regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
  1340. regs->gprs[15] = infop->start_stack;
  1341. }
  1342. /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
  1343. #define ELF_NREG 27
  1344. typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
  1345. enum {
  1346. TARGET_REG_PSWM = 0,
  1347. TARGET_REG_PSWA = 1,
  1348. TARGET_REG_GPRS = 2,
  1349. TARGET_REG_ARS = 18,
  1350. TARGET_REG_ORIG_R2 = 26,
  1351. };
  1352. static void elf_core_copy_regs(target_elf_gregset_t *regs,
  1353. const CPUS390XState *env)
  1354. {
  1355. int i;
  1356. uint32_t *aregs;
  1357. (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
  1358. (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
  1359. for (i = 0; i < 16; i++) {
  1360. (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
  1361. }
  1362. aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
  1363. for (i = 0; i < 16; i++) {
  1364. aregs[i] = tswap32(env->aregs[i]);
  1365. }
  1366. (*regs)[TARGET_REG_ORIG_R2] = 0;
  1367. }
  1368. #define USE_ELF_CORE_DUMP
  1369. #define ELF_EXEC_PAGESIZE 4096
  1370. #endif /* TARGET_S390X */
  1371. #ifdef TARGET_RISCV
  1372. #define ELF_START_MMAP 0x80000000
  1373. #define ELF_ARCH EM_RISCV
  1374. #ifdef TARGET_RISCV32
  1375. #define ELF_CLASS ELFCLASS32
  1376. #else
  1377. #define ELF_CLASS ELFCLASS64
  1378. #endif
  1379. #define ELF_HWCAP get_elf_hwcap()
  1380. static uint32_t get_elf_hwcap(void)
  1381. {
  1382. #define MISA_BIT(EXT) (1 << (EXT - 'A'))
  1383. RISCVCPU *cpu = RISCV_CPU(thread_cpu);
  1384. uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
  1385. | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
  1386. return cpu->env.misa_ext & mask;
  1387. #undef MISA_BIT
  1388. }
  1389. static inline void init_thread(struct target_pt_regs *regs,
  1390. struct image_info *infop)
  1391. {
  1392. regs->sepc = infop->entry;
  1393. regs->sp = infop->start_stack;
  1394. }
  1395. #define ELF_EXEC_PAGESIZE 4096
  1396. #endif /* TARGET_RISCV */
  1397. #ifdef TARGET_HPPA
  1398. #define ELF_START_MMAP 0x80000000
  1399. #define ELF_CLASS ELFCLASS32
  1400. #define ELF_ARCH EM_PARISC
  1401. #define ELF_PLATFORM "PARISC"
  1402. #define STACK_GROWS_DOWN 0
  1403. #define STACK_ALIGNMENT 64
  1404. static inline void init_thread(struct target_pt_regs *regs,
  1405. struct image_info *infop)
  1406. {
  1407. regs->iaoq[0] = infop->entry;
  1408. regs->iaoq[1] = infop->entry + 4;
  1409. regs->gr[23] = 0;
  1410. regs->gr[24] = infop->argv;
  1411. regs->gr[25] = infop->argc;
  1412. /* The top-of-stack contains a linkage buffer. */
  1413. regs->gr[30] = infop->start_stack + 64;
  1414. regs->gr[31] = infop->entry;
  1415. }
  1416. #define LO_COMMPAGE 0
  1417. static bool init_guest_commpage(void)
  1418. {
  1419. void *want = g2h_untagged(LO_COMMPAGE);
  1420. void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
  1421. MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
  1422. if (addr == MAP_FAILED) {
  1423. perror("Allocating guest commpage");
  1424. exit(EXIT_FAILURE);
  1425. }
  1426. if (addr != want) {
  1427. return false;
  1428. }
  1429. /*
  1430. * On Linux, page zero is normally marked execute only + gateway.
  1431. * Normal read or write is supposed to fail (thus PROT_NONE above),
  1432. * but specific offsets have kernel code mapped to raise permissions
  1433. * and implement syscalls. Here, simply mark the page executable.
  1434. * Special case the entry points during translation (see do_page_zero).
  1435. */
  1436. page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
  1437. PAGE_EXEC | PAGE_VALID);
  1438. return true;
  1439. }
  1440. #endif /* TARGET_HPPA */
  1441. #ifdef TARGET_XTENSA
  1442. #define ELF_START_MMAP 0x20000000
  1443. #define ELF_CLASS ELFCLASS32
  1444. #define ELF_ARCH EM_XTENSA
  1445. static inline void init_thread(struct target_pt_regs *regs,
  1446. struct image_info *infop)
  1447. {
  1448. regs->windowbase = 0;
  1449. regs->windowstart = 1;
  1450. regs->areg[1] = infop->start_stack;
  1451. regs->pc = infop->entry;
  1452. if (info_is_fdpic(infop)) {
  1453. regs->areg[4] = infop->loadmap_addr;
  1454. regs->areg[5] = infop->interpreter_loadmap_addr;
  1455. if (infop->interpreter_loadmap_addr) {
  1456. regs->areg[6] = infop->interpreter_pt_dynamic_addr;
  1457. } else {
  1458. regs->areg[6] = infop->pt_dynamic_addr;
  1459. }
  1460. }
  1461. }
  1462. /* See linux kernel: arch/xtensa/include/asm/elf.h. */
  1463. #define ELF_NREG 128
  1464. typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
  1465. enum {
  1466. TARGET_REG_PC,
  1467. TARGET_REG_PS,
  1468. TARGET_REG_LBEG,
  1469. TARGET_REG_LEND,
  1470. TARGET_REG_LCOUNT,
  1471. TARGET_REG_SAR,
  1472. TARGET_REG_WINDOWSTART,
  1473. TARGET_REG_WINDOWBASE,
  1474. TARGET_REG_THREADPTR,
  1475. TARGET_REG_AR0 = 64,
  1476. };
  1477. static void elf_core_copy_regs(target_elf_gregset_t *regs,
  1478. const CPUXtensaState *env)
  1479. {
  1480. unsigned i;
  1481. (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
  1482. (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
  1483. (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
  1484. (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
  1485. (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
  1486. (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
  1487. (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
  1488. (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
  1489. (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
  1490. xtensa_sync_phys_from_window((CPUXtensaState *)env);
  1491. for (i = 0; i < env->config->nareg; ++i) {
  1492. (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
  1493. }
  1494. }
  1495. #define USE_ELF_CORE_DUMP
  1496. #define ELF_EXEC_PAGESIZE 4096
  1497. #endif /* TARGET_XTENSA */
  1498. #ifdef TARGET_HEXAGON
  1499. #define ELF_START_MMAP 0x20000000
  1500. #define ELF_CLASS ELFCLASS32
  1501. #define ELF_ARCH EM_HEXAGON
  1502. static inline void init_thread(struct target_pt_regs *regs,
  1503. struct image_info *infop)
  1504. {
  1505. regs->sepc = infop->entry;
  1506. regs->sp = infop->start_stack;
  1507. }
  1508. #endif /* TARGET_HEXAGON */
  1509. #ifndef ELF_BASE_PLATFORM
  1510. #define ELF_BASE_PLATFORM (NULL)
  1511. #endif
  1512. #ifndef ELF_PLATFORM
  1513. #define ELF_PLATFORM (NULL)
  1514. #endif
  1515. #ifndef ELF_MACHINE
  1516. #define ELF_MACHINE ELF_ARCH
  1517. #endif
  1518. #ifndef elf_check_arch
  1519. #define elf_check_arch(x) ((x) == ELF_ARCH)
  1520. #endif
  1521. #ifndef elf_check_abi
  1522. #define elf_check_abi(x) (1)
  1523. #endif
  1524. #ifndef ELF_HWCAP
  1525. #define ELF_HWCAP 0
  1526. #endif
  1527. #ifndef STACK_GROWS_DOWN
  1528. #define STACK_GROWS_DOWN 1
  1529. #endif
  1530. #ifndef STACK_ALIGNMENT
  1531. #define STACK_ALIGNMENT 16
  1532. #endif
  1533. #ifdef TARGET_ABI32
  1534. #undef ELF_CLASS
  1535. #define ELF_CLASS ELFCLASS32
  1536. #undef bswaptls
  1537. #define bswaptls(ptr) bswap32s(ptr)
  1538. #endif
  1539. #ifndef EXSTACK_DEFAULT
  1540. #define EXSTACK_DEFAULT false
  1541. #endif
  1542. #include "elf.h"
  1543. /* We must delay the following stanzas until after "elf.h". */
  1544. #if defined(TARGET_AARCH64)
  1545. static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
  1546. const uint32_t *data,
  1547. struct image_info *info,
  1548. Error **errp)
  1549. {
  1550. if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
  1551. if (pr_datasz != sizeof(uint32_t)) {
  1552. error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
  1553. return false;
  1554. }
  1555. /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
  1556. info->note_flags = *data;
  1557. }
  1558. return true;
  1559. }
  1560. #define ARCH_USE_GNU_PROPERTY 1
  1561. #else
  1562. static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
  1563. const uint32_t *data,
  1564. struct image_info *info,
  1565. Error **errp)
  1566. {
  1567. g_assert_not_reached();
  1568. }
  1569. #define ARCH_USE_GNU_PROPERTY 0
  1570. #endif
  1571. struct exec
  1572. {
  1573. unsigned int a_info; /* Use macros N_MAGIC, etc for access */
  1574. unsigned int a_text; /* length of text, in bytes */
  1575. unsigned int a_data; /* length of data, in bytes */
  1576. unsigned int a_bss; /* length of uninitialized data area, in bytes */
  1577. unsigned int a_syms; /* length of symbol table data in file, in bytes */
  1578. unsigned int a_entry; /* start address */
  1579. unsigned int a_trsize; /* length of relocation info for text, in bytes */
  1580. unsigned int a_drsize; /* length of relocation info for data, in bytes */
  1581. };
  1582. #define N_MAGIC(exec) ((exec).a_info & 0xffff)
  1583. #define OMAGIC 0407
  1584. #define NMAGIC 0410
  1585. #define ZMAGIC 0413
  1586. #define QMAGIC 0314
  1587. /* Necessary parameters */
  1588. #define TARGET_ELF_EXEC_PAGESIZE \
  1589. (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
  1590. TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
  1591. #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
  1592. #define TARGET_ELF_PAGESTART(_v) ((_v) & \
  1593. ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
  1594. #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
  1595. #define DLINFO_ITEMS 16
  1596. static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
  1597. {
  1598. memcpy(to, from, n);
  1599. }
  1600. #ifdef BSWAP_NEEDED
  1601. static void bswap_ehdr(struct elfhdr *ehdr)
  1602. {
  1603. bswap16s(&ehdr->e_type); /* Object file type */
  1604. bswap16s(&ehdr->e_machine); /* Architecture */
  1605. bswap32s(&ehdr->e_version); /* Object file version */
  1606. bswaptls(&ehdr->e_entry); /* Entry point virtual address */
  1607. bswaptls(&ehdr->e_phoff); /* Program header table file offset */
  1608. bswaptls(&ehdr->e_shoff); /* Section header table file offset */
  1609. bswap32s(&ehdr->e_flags); /* Processor-specific flags */
  1610. bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
  1611. bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
  1612. bswap16s(&ehdr->e_phnum); /* Program header table entry count */
  1613. bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
  1614. bswap16s(&ehdr->e_shnum); /* Section header table entry count */
  1615. bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
  1616. }
  1617. static void bswap_phdr(struct elf_phdr *phdr, int phnum)
  1618. {
  1619. int i;
  1620. for (i = 0; i < phnum; ++i, ++phdr) {
  1621. bswap32s(&phdr->p_type); /* Segment type */
  1622. bswap32s(&phdr->p_flags); /* Segment flags */
  1623. bswaptls(&phdr->p_offset); /* Segment file offset */
  1624. bswaptls(&phdr->p_vaddr); /* Segment virtual address */
  1625. bswaptls(&phdr->p_paddr); /* Segment physical address */
  1626. bswaptls(&phdr->p_filesz); /* Segment size in file */
  1627. bswaptls(&phdr->p_memsz); /* Segment size in memory */
  1628. bswaptls(&phdr->p_align); /* Segment alignment */
  1629. }
  1630. }
  1631. static void bswap_shdr(struct elf_shdr *shdr, int shnum)
  1632. {
  1633. int i;
  1634. for (i = 0; i < shnum; ++i, ++shdr) {
  1635. bswap32s(&shdr->sh_name);
  1636. bswap32s(&shdr->sh_type);
  1637. bswaptls(&shdr->sh_flags);
  1638. bswaptls(&shdr->sh_addr);
  1639. bswaptls(&shdr->sh_offset);
  1640. bswaptls(&shdr->sh_size);
  1641. bswap32s(&shdr->sh_link);
  1642. bswap32s(&shdr->sh_info);
  1643. bswaptls(&shdr->sh_addralign);
  1644. bswaptls(&shdr->sh_entsize);
  1645. }
  1646. }
  1647. static void bswap_sym(struct elf_sym *sym)
  1648. {
  1649. bswap32s(&sym->st_name);
  1650. bswaptls(&sym->st_value);
  1651. bswaptls(&sym->st_size);
  1652. bswap16s(&sym->st_shndx);
  1653. }
  1654. #ifdef TARGET_MIPS
  1655. static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
  1656. {
  1657. bswap16s(&abiflags->version);
  1658. bswap32s(&abiflags->ases);
  1659. bswap32s(&abiflags->isa_ext);
  1660. bswap32s(&abiflags->flags1);
  1661. bswap32s(&abiflags->flags2);
  1662. }
  1663. #endif
  1664. #else
  1665. static inline void bswap_ehdr(struct elfhdr *ehdr) { }
  1666. static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
  1667. static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
  1668. static inline void bswap_sym(struct elf_sym *sym) { }
  1669. #ifdef TARGET_MIPS
  1670. static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
  1671. #endif
  1672. #endif
  1673. #ifdef USE_ELF_CORE_DUMP
  1674. static int elf_core_dump(int, const CPUArchState *);
  1675. #endif /* USE_ELF_CORE_DUMP */
  1676. static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
  1677. /* Verify the portions of EHDR within E_IDENT for the target.
  1678. This can be performed before bswapping the entire header. */
  1679. static bool elf_check_ident(struct elfhdr *ehdr)
  1680. {
  1681. return (ehdr->e_ident[EI_MAG0] == ELFMAG0
  1682. && ehdr->e_ident[EI_MAG1] == ELFMAG1
  1683. && ehdr->e_ident[EI_MAG2] == ELFMAG2
  1684. && ehdr->e_ident[EI_MAG3] == ELFMAG3
  1685. && ehdr->e_ident[EI_CLASS] == ELF_CLASS
  1686. && ehdr->e_ident[EI_DATA] == ELF_DATA
  1687. && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
  1688. }
  1689. /* Verify the portions of EHDR outside of E_IDENT for the target.
  1690. This has to wait until after bswapping the header. */
  1691. static bool elf_check_ehdr(struct elfhdr *ehdr)
  1692. {
  1693. return (elf_check_arch(ehdr->e_machine)
  1694. && elf_check_abi(ehdr->e_flags)
  1695. && ehdr->e_ehsize == sizeof(struct elfhdr)
  1696. && ehdr->e_phentsize == sizeof(struct elf_phdr)
  1697. && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
  1698. }
  1699. /*
  1700. * 'copy_elf_strings()' copies argument/envelope strings from user
  1701. * memory to free pages in kernel mem. These are in a format ready
  1702. * to be put directly into the top of new user memory.
  1703. *
  1704. */
  1705. static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
  1706. abi_ulong p, abi_ulong stack_limit)
  1707. {
  1708. char *tmp;
  1709. int len, i;
  1710. abi_ulong top = p;
  1711. if (!p) {
  1712. return 0; /* bullet-proofing */
  1713. }
  1714. if (STACK_GROWS_DOWN) {
  1715. int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
  1716. for (i = argc - 1; i >= 0; --i) {
  1717. tmp = argv[i];
  1718. if (!tmp) {
  1719. fprintf(stderr, "VFS: argc is wrong");
  1720. exit(-1);
  1721. }
  1722. len = strlen(tmp) + 1;
  1723. tmp += len;
  1724. if (len > (p - stack_limit)) {
  1725. return 0;
  1726. }
  1727. while (len) {
  1728. int bytes_to_copy = (len > offset) ? offset : len;
  1729. tmp -= bytes_to_copy;
  1730. p -= bytes_to_copy;
  1731. offset -= bytes_to_copy;
  1732. len -= bytes_to_copy;
  1733. memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
  1734. if (offset == 0) {
  1735. memcpy_to_target(p, scratch, top - p);
  1736. top = p;
  1737. offset = TARGET_PAGE_SIZE;
  1738. }
  1739. }
  1740. }
  1741. if (p != top) {
  1742. memcpy_to_target(p, scratch + offset, top - p);
  1743. }
  1744. } else {
  1745. int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
  1746. for (i = 0; i < argc; ++i) {
  1747. tmp = argv[i];
  1748. if (!tmp) {
  1749. fprintf(stderr, "VFS: argc is wrong");
  1750. exit(-1);
  1751. }
  1752. len = strlen(tmp) + 1;
  1753. if (len > (stack_limit - p)) {
  1754. return 0;
  1755. }
  1756. while (len) {
  1757. int bytes_to_copy = (len > remaining) ? remaining : len;
  1758. memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
  1759. tmp += bytes_to_copy;
  1760. remaining -= bytes_to_copy;
  1761. p += bytes_to_copy;
  1762. len -= bytes_to_copy;
  1763. if (remaining == 0) {
  1764. memcpy_to_target(top, scratch, p - top);
  1765. top = p;
  1766. remaining = TARGET_PAGE_SIZE;
  1767. }
  1768. }
  1769. }
  1770. if (p != top) {
  1771. memcpy_to_target(top, scratch, p - top);
  1772. }
  1773. }
  1774. return p;
  1775. }
  1776. /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
  1777. * argument/environment space. Newer kernels (>2.6.33) allow more,
  1778. * dependent on stack size, but guarantee at least 32 pages for
  1779. * backwards compatibility.
  1780. */
  1781. #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
  1782. static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
  1783. struct image_info *info)
  1784. {
  1785. abi_ulong size, error, guard;
  1786. int prot;
  1787. size = guest_stack_size;
  1788. if (size < STACK_LOWER_LIMIT) {
  1789. size = STACK_LOWER_LIMIT;
  1790. }
  1791. if (STACK_GROWS_DOWN) {
  1792. guard = TARGET_PAGE_SIZE;
  1793. if (guard < qemu_real_host_page_size()) {
  1794. guard = qemu_real_host_page_size();
  1795. }
  1796. } else {
  1797. /* no guard page for hppa target where stack grows upwards. */
  1798. guard = 0;
  1799. }
  1800. prot = PROT_READ | PROT_WRITE;
  1801. if (info->exec_stack) {
  1802. prot |= PROT_EXEC;
  1803. }
  1804. error = target_mmap(0, size + guard, prot,
  1805. MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  1806. if (error == -1) {
  1807. perror("mmap stack");
  1808. exit(-1);
  1809. }
  1810. /* We reserve one extra page at the top of the stack as guard. */
  1811. if (STACK_GROWS_DOWN) {
  1812. target_mprotect(error, guard, PROT_NONE);
  1813. info->stack_limit = error + guard;
  1814. return info->stack_limit + size - sizeof(void *);
  1815. } else {
  1816. info->stack_limit = error + size;
  1817. return error;
  1818. }
  1819. }
  1820. /* Map and zero the bss. We need to explicitly zero any fractional pages
  1821. after the data section (i.e. bss). */
  1822. static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
  1823. {
  1824. uintptr_t host_start, host_map_start, host_end;
  1825. last_bss = TARGET_PAGE_ALIGN(last_bss);
  1826. /* ??? There is confusion between qemu_real_host_page_size and
  1827. qemu_host_page_size here and elsewhere in target_mmap, which
  1828. may lead to the end of the data section mapping from the file
  1829. not being mapped. At least there was an explicit test and
  1830. comment for that here, suggesting that "the file size must
  1831. be known". The comment probably pre-dates the introduction
  1832. of the fstat system call in target_mmap which does in fact
  1833. find out the size. What isn't clear is if the workaround
  1834. here is still actually needed. For now, continue with it,
  1835. but merge it with the "normal" mmap that would allocate the bss. */
  1836. host_start = (uintptr_t) g2h_untagged(elf_bss);
  1837. host_end = (uintptr_t) g2h_untagged(last_bss);
  1838. host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
  1839. if (host_map_start < host_end) {
  1840. void *p = mmap((void *)host_map_start, host_end - host_map_start,
  1841. prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  1842. if (p == MAP_FAILED) {
  1843. perror("cannot mmap brk");
  1844. exit(-1);
  1845. }
  1846. }
  1847. /* Ensure that the bss page(s) are valid */
  1848. if ((page_get_flags(last_bss-1) & prot) != prot) {
  1849. page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss - 1,
  1850. prot | PAGE_VALID);
  1851. }
  1852. if (host_start < host_map_start) {
  1853. memset((void *)host_start, 0, host_map_start - host_start);
  1854. }
  1855. }
  1856. #if defined(TARGET_ARM)
  1857. static int elf_is_fdpic(struct elfhdr *exec)
  1858. {
  1859. return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
  1860. }
  1861. #elif defined(TARGET_XTENSA)
  1862. static int elf_is_fdpic(struct elfhdr *exec)
  1863. {
  1864. return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
  1865. }
  1866. #else
  1867. /* Default implementation, always false. */
  1868. static int elf_is_fdpic(struct elfhdr *exec)
  1869. {
  1870. return 0;
  1871. }
  1872. #endif
  1873. static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
  1874. {
  1875. uint16_t n;
  1876. struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
  1877. /* elf32_fdpic_loadseg */
  1878. n = info->nsegs;
  1879. while (n--) {
  1880. sp -= 12;
  1881. put_user_u32(loadsegs[n].addr, sp+0);
  1882. put_user_u32(loadsegs[n].p_vaddr, sp+4);
  1883. put_user_u32(loadsegs[n].p_memsz, sp+8);
  1884. }
  1885. /* elf32_fdpic_loadmap */
  1886. sp -= 4;
  1887. put_user_u16(0, sp+0); /* version */
  1888. put_user_u16(info->nsegs, sp+2); /* nsegs */
  1889. info->personality = PER_LINUX_FDPIC;
  1890. info->loadmap_addr = sp;
  1891. return sp;
  1892. }
  1893. static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
  1894. struct elfhdr *exec,
  1895. struct image_info *info,
  1896. struct image_info *interp_info)
  1897. {
  1898. abi_ulong sp;
  1899. abi_ulong u_argc, u_argv, u_envp, u_auxv;
  1900. int size;
  1901. int i;
  1902. abi_ulong u_rand_bytes;
  1903. uint8_t k_rand_bytes[16];
  1904. abi_ulong u_platform, u_base_platform;
  1905. const char *k_platform, *k_base_platform;
  1906. const int n = sizeof(elf_addr_t);
  1907. sp = p;
  1908. /* Needs to be before we load the env/argc/... */
  1909. if (elf_is_fdpic(exec)) {
  1910. /* Need 4 byte alignment for these structs */
  1911. sp &= ~3;
  1912. sp = loader_build_fdpic_loadmap(info, sp);
  1913. info->other_info = interp_info;
  1914. if (interp_info) {
  1915. interp_info->other_info = info;
  1916. sp = loader_build_fdpic_loadmap(interp_info, sp);
  1917. info->interpreter_loadmap_addr = interp_info->loadmap_addr;
  1918. info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
  1919. } else {
  1920. info->interpreter_loadmap_addr = 0;
  1921. info->interpreter_pt_dynamic_addr = 0;
  1922. }
  1923. }
  1924. u_base_platform = 0;
  1925. k_base_platform = ELF_BASE_PLATFORM;
  1926. if (k_base_platform) {
  1927. size_t len = strlen(k_base_platform) + 1;
  1928. if (STACK_GROWS_DOWN) {
  1929. sp -= (len + n - 1) & ~(n - 1);
  1930. u_base_platform = sp;
  1931. /* FIXME - check return value of memcpy_to_target() for failure */
  1932. memcpy_to_target(sp, k_base_platform, len);
  1933. } else {
  1934. memcpy_to_target(sp, k_base_platform, len);
  1935. u_base_platform = sp;
  1936. sp += len + 1;
  1937. }
  1938. }
  1939. u_platform = 0;
  1940. k_platform = ELF_PLATFORM;
  1941. if (k_platform) {
  1942. size_t len = strlen(k_platform) + 1;
  1943. if (STACK_GROWS_DOWN) {
  1944. sp -= (len + n - 1) & ~(n - 1);
  1945. u_platform = sp;
  1946. /* FIXME - check return value of memcpy_to_target() for failure */
  1947. memcpy_to_target(sp, k_platform, len);
  1948. } else {
  1949. memcpy_to_target(sp, k_platform, len);
  1950. u_platform = sp;
  1951. sp += len + 1;
  1952. }
  1953. }
  1954. /* Provide 16 byte alignment for the PRNG, and basic alignment for
  1955. * the argv and envp pointers.
  1956. */
  1957. if (STACK_GROWS_DOWN) {
  1958. sp = QEMU_ALIGN_DOWN(sp, 16);
  1959. } else {
  1960. sp = QEMU_ALIGN_UP(sp, 16);
  1961. }
  1962. /*
  1963. * Generate 16 random bytes for userspace PRNG seeding.
  1964. */
  1965. qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
  1966. if (STACK_GROWS_DOWN) {
  1967. sp -= 16;
  1968. u_rand_bytes = sp;
  1969. /* FIXME - check return value of memcpy_to_target() for failure */
  1970. memcpy_to_target(sp, k_rand_bytes, 16);
  1971. } else {
  1972. memcpy_to_target(sp, k_rand_bytes, 16);
  1973. u_rand_bytes = sp;
  1974. sp += 16;
  1975. }
  1976. size = (DLINFO_ITEMS + 1) * 2;
  1977. if (k_base_platform)
  1978. size += 2;
  1979. if (k_platform)
  1980. size += 2;
  1981. #ifdef DLINFO_ARCH_ITEMS
  1982. size += DLINFO_ARCH_ITEMS * 2;
  1983. #endif
  1984. #ifdef ELF_HWCAP2
  1985. size += 2;
  1986. #endif
  1987. info->auxv_len = size * n;
  1988. size += envc + argc + 2;
  1989. size += 1; /* argc itself */
  1990. size *= n;
  1991. /* Allocate space and finalize stack alignment for entry now. */
  1992. if (STACK_GROWS_DOWN) {
  1993. u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
  1994. sp = u_argc;
  1995. } else {
  1996. u_argc = sp;
  1997. sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
  1998. }
  1999. u_argv = u_argc + n;
  2000. u_envp = u_argv + (argc + 1) * n;
  2001. u_auxv = u_envp + (envc + 1) * n;
  2002. info->saved_auxv = u_auxv;
  2003. info->argc = argc;
  2004. info->envc = envc;
  2005. info->argv = u_argv;
  2006. info->envp = u_envp;
  2007. /* This is correct because Linux defines
  2008. * elf_addr_t as Elf32_Off / Elf64_Off
  2009. */
  2010. #define NEW_AUX_ENT(id, val) do { \
  2011. put_user_ual(id, u_auxv); u_auxv += n; \
  2012. put_user_ual(val, u_auxv); u_auxv += n; \
  2013. } while(0)
  2014. #ifdef ARCH_DLINFO
  2015. /*
  2016. * ARCH_DLINFO must come first so platform specific code can enforce
  2017. * special alignment requirements on the AUXV if necessary (eg. PPC).
  2018. */
  2019. ARCH_DLINFO;
  2020. #endif
  2021. /* There must be exactly DLINFO_ITEMS entries here, or the assert
  2022. * on info->auxv_len will trigger.
  2023. */
  2024. NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
  2025. NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
  2026. NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
  2027. if ((info->alignment & ~qemu_host_page_mask) != 0) {
  2028. /* Target doesn't support host page size alignment */
  2029. NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
  2030. } else {
  2031. NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
  2032. qemu_host_page_size)));
  2033. }
  2034. NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
  2035. NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
  2036. NEW_AUX_ENT(AT_ENTRY, info->entry);
  2037. NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
  2038. NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
  2039. NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
  2040. NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
  2041. NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
  2042. NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
  2043. NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
  2044. NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
  2045. NEW_AUX_ENT(AT_EXECFN, info->file_string);
  2046. #ifdef ELF_HWCAP2
  2047. NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
  2048. #endif
  2049. if (u_base_platform) {
  2050. NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
  2051. }
  2052. if (u_platform) {
  2053. NEW_AUX_ENT(AT_PLATFORM, u_platform);
  2054. }
  2055. NEW_AUX_ENT (AT_NULL, 0);
  2056. #undef NEW_AUX_ENT
  2057. /* Check that our initial calculation of the auxv length matches how much
  2058. * we actually put into it.
  2059. */
  2060. assert(info->auxv_len == u_auxv - info->saved_auxv);
  2061. put_user_ual(argc, u_argc);
  2062. p = info->arg_strings;
  2063. for (i = 0; i < argc; ++i) {
  2064. put_user_ual(p, u_argv);
  2065. u_argv += n;
  2066. p += target_strlen(p) + 1;
  2067. }
  2068. put_user_ual(0, u_argv);
  2069. p = info->env_strings;
  2070. for (i = 0; i < envc; ++i) {
  2071. put_user_ual(p, u_envp);
  2072. u_envp += n;
  2073. p += target_strlen(p) + 1;
  2074. }
  2075. put_user_ual(0, u_envp);
  2076. return sp;
  2077. }
  2078. #if defined(HI_COMMPAGE)
  2079. #define LO_COMMPAGE -1
  2080. #elif defined(LO_COMMPAGE)
  2081. #define HI_COMMPAGE 0
  2082. #else
  2083. #define HI_COMMPAGE 0
  2084. #define LO_COMMPAGE -1
  2085. #ifndef INIT_GUEST_COMMPAGE
  2086. #define init_guest_commpage() true
  2087. #endif
  2088. #endif
  2089. static void pgb_fail_in_use(const char *image_name)
  2090. {
  2091. error_report("%s: requires virtual address space that is in use "
  2092. "(omit the -B option or choose a different value)",
  2093. image_name);
  2094. exit(EXIT_FAILURE);
  2095. }
  2096. static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
  2097. abi_ulong guest_hiaddr, long align)
  2098. {
  2099. const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
  2100. void *addr, *test;
  2101. if (!QEMU_IS_ALIGNED(guest_base, align)) {
  2102. fprintf(stderr, "Requested guest base %p does not satisfy "
  2103. "host minimum alignment (0x%lx)\n",
  2104. (void *)guest_base, align);
  2105. exit(EXIT_FAILURE);
  2106. }
  2107. /* Sanity check the guest binary. */
  2108. if (reserved_va) {
  2109. if (guest_hiaddr > reserved_va) {
  2110. error_report("%s: requires more than reserved virtual "
  2111. "address space (0x%" PRIx64 " > 0x%lx)",
  2112. image_name, (uint64_t)guest_hiaddr, reserved_va);
  2113. exit(EXIT_FAILURE);
  2114. }
  2115. } else {
  2116. #if HOST_LONG_BITS < TARGET_ABI_BITS
  2117. if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
  2118. error_report("%s: requires more virtual address space "
  2119. "than the host can provide (0x%" PRIx64 ")",
  2120. image_name, (uint64_t)guest_hiaddr + 1 - guest_base);
  2121. exit(EXIT_FAILURE);
  2122. }
  2123. #endif
  2124. }
  2125. /*
  2126. * Expand the allocation to the entire reserved_va.
  2127. * Exclude the mmap_min_addr hole.
  2128. */
  2129. if (reserved_va) {
  2130. guest_loaddr = (guest_base >= mmap_min_addr ? 0
  2131. : mmap_min_addr - guest_base);
  2132. guest_hiaddr = reserved_va;
  2133. }
  2134. /* Reserve the address space for the binary, or reserved_va. */
  2135. test = g2h_untagged(guest_loaddr);
  2136. addr = mmap(test, guest_hiaddr - guest_loaddr + 1, PROT_NONE, flags, -1, 0);
  2137. if (test != addr) {
  2138. pgb_fail_in_use(image_name);
  2139. }
  2140. qemu_log_mask(CPU_LOG_PAGE,
  2141. "%s: base @ %p for %" PRIu64 " bytes\n",
  2142. __func__, addr, (uint64_t)guest_hiaddr - guest_loaddr + 1);
  2143. }
  2144. /**
  2145. * pgd_find_hole_fallback: potential mmap address
  2146. * @guest_size: size of available space
  2147. * @brk: location of break
  2148. * @align: memory alignment
  2149. *
  2150. * This is a fallback method for finding a hole in the host address
  2151. * space if we don't have the benefit of being able to access
  2152. * /proc/self/map. It can potentially take a very long time as we can
  2153. * only dumbly iterate up the host address space seeing if the
  2154. * allocation would work.
  2155. */
  2156. static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
  2157. long align, uintptr_t offset)
  2158. {
  2159. uintptr_t base;
  2160. /* Start (aligned) at the bottom and work our way up */
  2161. base = ROUND_UP(mmap_min_addr, align);
  2162. while (true) {
  2163. uintptr_t align_start, end;
  2164. align_start = ROUND_UP(base, align);
  2165. end = align_start + guest_size + offset;
  2166. /* if brk is anywhere in the range give ourselves some room to grow. */
  2167. if (align_start <= brk && brk < end) {
  2168. base = brk + (16 * MiB);
  2169. continue;
  2170. } else if (align_start + guest_size < align_start) {
  2171. /* we have run out of space */
  2172. return -1;
  2173. } else {
  2174. int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
  2175. MAP_FIXED_NOREPLACE;
  2176. void * mmap_start = mmap((void *) align_start, guest_size,
  2177. PROT_NONE, flags, -1, 0);
  2178. if (mmap_start != MAP_FAILED) {
  2179. munmap(mmap_start, guest_size);
  2180. if (mmap_start == (void *) align_start) {
  2181. qemu_log_mask(CPU_LOG_PAGE,
  2182. "%s: base @ %p for %" PRIdPTR" bytes\n",
  2183. __func__, mmap_start + offset, guest_size);
  2184. return (uintptr_t) mmap_start + offset;
  2185. }
  2186. }
  2187. base += qemu_host_page_size;
  2188. }
  2189. }
  2190. }
  2191. /* Return value for guest_base, or -1 if no hole found. */
  2192. static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
  2193. long align, uintptr_t offset)
  2194. {
  2195. GSList *maps, *iter;
  2196. uintptr_t this_start, this_end, next_start, brk;
  2197. intptr_t ret = -1;
  2198. assert(QEMU_IS_ALIGNED(guest_loaddr, align));
  2199. maps = read_self_maps();
  2200. /* Read brk after we've read the maps, which will malloc. */
  2201. brk = (uintptr_t)sbrk(0);
  2202. if (!maps) {
  2203. return pgd_find_hole_fallback(guest_size, brk, align, offset);
  2204. }
  2205. /* The first hole is before the first map entry. */
  2206. this_start = mmap_min_addr;
  2207. for (iter = maps; iter;
  2208. this_start = next_start, iter = g_slist_next(iter)) {
  2209. uintptr_t align_start, hole_size;
  2210. this_end = ((MapInfo *)iter->data)->start;
  2211. next_start = ((MapInfo *)iter->data)->end;
  2212. align_start = ROUND_UP(this_start + offset, align);
  2213. /* Skip holes that are too small. */
  2214. if (align_start >= this_end) {
  2215. continue;
  2216. }
  2217. hole_size = this_end - align_start;
  2218. if (hole_size < guest_size) {
  2219. continue;
  2220. }
  2221. /* If this hole contains brk, give ourselves some room to grow. */
  2222. if (this_start <= brk && brk < this_end) {
  2223. hole_size -= guest_size;
  2224. if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
  2225. align_start += 1 * GiB;
  2226. } else if (hole_size >= 16 * MiB) {
  2227. align_start += 16 * MiB;
  2228. } else {
  2229. align_start = (this_end - guest_size) & -align;
  2230. if (align_start < this_start) {
  2231. continue;
  2232. }
  2233. }
  2234. }
  2235. /* Record the lowest successful match. */
  2236. if (ret < 0) {
  2237. ret = align_start;
  2238. }
  2239. /* If this hole contains the identity map, select it. */
  2240. if (align_start <= guest_loaddr &&
  2241. guest_loaddr + guest_size <= this_end) {
  2242. ret = 0;
  2243. }
  2244. /* If this hole ends above the identity map, stop looking. */
  2245. if (this_end >= guest_loaddr) {
  2246. break;
  2247. }
  2248. }
  2249. free_self_maps(maps);
  2250. if (ret != -1) {
  2251. qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR
  2252. " for %" PRIuPTR " bytes\n",
  2253. __func__, ret, guest_size);
  2254. }
  2255. return ret;
  2256. }
  2257. static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
  2258. abi_ulong orig_hiaddr, long align)
  2259. {
  2260. uintptr_t loaddr = orig_loaddr;
  2261. uintptr_t hiaddr = orig_hiaddr;
  2262. uintptr_t offset = 0;
  2263. uintptr_t addr;
  2264. if (hiaddr != orig_hiaddr) {
  2265. error_report("%s: requires virtual address space that the "
  2266. "host cannot provide (0x%" PRIx64 ")",
  2267. image_name, (uint64_t)orig_hiaddr + 1);
  2268. exit(EXIT_FAILURE);
  2269. }
  2270. loaddr &= -align;
  2271. if (HI_COMMPAGE) {
  2272. /*
  2273. * Extend the allocation to include the commpage.
  2274. * For a 64-bit host, this is just 4GiB; for a 32-bit host we
  2275. * need to ensure there is space bellow the guest_base so we
  2276. * can map the commpage in the place needed when the address
  2277. * arithmetic wraps around.
  2278. */
  2279. if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
  2280. hiaddr = UINT32_MAX;
  2281. } else {
  2282. offset = -(HI_COMMPAGE & -align);
  2283. }
  2284. } else if (LO_COMMPAGE != -1) {
  2285. loaddr = MIN(loaddr, LO_COMMPAGE & -align);
  2286. }
  2287. addr = pgb_find_hole(loaddr, hiaddr - loaddr + 1, align, offset);
  2288. if (addr == -1) {
  2289. /*
  2290. * If HI_COMMPAGE, there *might* be a non-consecutive allocation
  2291. * that can satisfy both. But as the normal arm32 link base address
  2292. * is ~32k, and we extend down to include the commpage, making the
  2293. * overhead only ~96k, this is unlikely.
  2294. */
  2295. error_report("%s: Unable to allocate %#zx bytes of "
  2296. "virtual address space", image_name,
  2297. (size_t)(hiaddr - loaddr));
  2298. exit(EXIT_FAILURE);
  2299. }
  2300. guest_base = addr;
  2301. qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n",
  2302. __func__, addr, hiaddr - loaddr);
  2303. }
  2304. static void pgb_dynamic(const char *image_name, long align)
  2305. {
  2306. /*
  2307. * The executable is dynamic and does not require a fixed address.
  2308. * All we need is a commpage that satisfies align.
  2309. * If we do not need a commpage, leave guest_base == 0.
  2310. */
  2311. if (HI_COMMPAGE) {
  2312. uintptr_t addr, commpage;
  2313. /* 64-bit hosts should have used reserved_va. */
  2314. assert(sizeof(uintptr_t) == 4);
  2315. /*
  2316. * By putting the commpage at the first hole, that puts guest_base
  2317. * just above that, and maximises the positive guest addresses.
  2318. */
  2319. commpage = HI_COMMPAGE & -align;
  2320. addr = pgb_find_hole(commpage, -commpage, align, 0);
  2321. assert(addr != -1);
  2322. guest_base = addr;
  2323. }
  2324. }
  2325. static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
  2326. abi_ulong guest_hiaddr, long align)
  2327. {
  2328. int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
  2329. void *addr, *test;
  2330. if (guest_hiaddr > reserved_va) {
  2331. error_report("%s: requires more than reserved virtual "
  2332. "address space (0x%" PRIx64 " > 0x%lx)",
  2333. image_name, (uint64_t)guest_hiaddr, reserved_va);
  2334. exit(EXIT_FAILURE);
  2335. }
  2336. /* Widen the "image" to the entire reserved address space. */
  2337. pgb_static(image_name, 0, reserved_va, align);
  2338. /* osdep.h defines this as 0 if it's missing */
  2339. flags |= MAP_FIXED_NOREPLACE;
  2340. /* Reserve the memory on the host. */
  2341. assert(guest_base != 0);
  2342. test = g2h_untagged(0);
  2343. addr = mmap(test, reserved_va + 1, PROT_NONE, flags, -1, 0);
  2344. if (addr == MAP_FAILED || addr != test) {
  2345. error_report("Unable to reserve 0x%lx bytes of virtual address "
  2346. "space at %p (%s) for use as guest address space (check your "
  2347. "virtual memory ulimit setting, min_mmap_addr or reserve less "
  2348. "using -R option)", reserved_va + 1, test, strerror(errno));
  2349. exit(EXIT_FAILURE);
  2350. }
  2351. qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n",
  2352. __func__, addr, reserved_va + 1);
  2353. }
  2354. void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
  2355. abi_ulong guest_hiaddr)
  2356. {
  2357. /* In order to use host shmat, we must be able to honor SHMLBA. */
  2358. uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
  2359. if (have_guest_base) {
  2360. pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
  2361. } else if (reserved_va) {
  2362. pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
  2363. } else if (guest_loaddr) {
  2364. pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
  2365. } else {
  2366. pgb_dynamic(image_name, align);
  2367. }
  2368. /* Reserve and initialize the commpage. */
  2369. if (!init_guest_commpage()) {
  2370. /*
  2371. * With have_guest_base, the user has selected the address and
  2372. * we are trying to work with that. Otherwise, we have selected
  2373. * free space and init_guest_commpage must succeeded.
  2374. */
  2375. assert(have_guest_base);
  2376. pgb_fail_in_use(image_name);
  2377. }
  2378. assert(QEMU_IS_ALIGNED(guest_base, align));
  2379. qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
  2380. "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
  2381. }
  2382. enum {
  2383. /* The string "GNU\0" as a magic number. */
  2384. GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
  2385. NOTE_DATA_SZ = 1 * KiB,
  2386. NOTE_NAME_SZ = 4,
  2387. ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
  2388. };
  2389. /*
  2390. * Process a single gnu_property entry.
  2391. * Return false for error.
  2392. */
  2393. static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
  2394. struct image_info *info, bool have_prev_type,
  2395. uint32_t *prev_type, Error **errp)
  2396. {
  2397. uint32_t pr_type, pr_datasz, step;
  2398. if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
  2399. goto error_data;
  2400. }
  2401. datasz -= *off;
  2402. data += *off / sizeof(uint32_t);
  2403. if (datasz < 2 * sizeof(uint32_t)) {
  2404. goto error_data;
  2405. }
  2406. pr_type = data[0];
  2407. pr_datasz = data[1];
  2408. data += 2;
  2409. datasz -= 2 * sizeof(uint32_t);
  2410. step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
  2411. if (step > datasz) {
  2412. goto error_data;
  2413. }
  2414. /* Properties are supposed to be unique and sorted on pr_type. */
  2415. if (have_prev_type && pr_type <= *prev_type) {
  2416. if (pr_type == *prev_type) {
  2417. error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
  2418. } else {
  2419. error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
  2420. }
  2421. return false;
  2422. }
  2423. *prev_type = pr_type;
  2424. if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
  2425. return false;
  2426. }
  2427. *off += 2 * sizeof(uint32_t) + step;
  2428. return true;
  2429. error_data:
  2430. error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
  2431. return false;
  2432. }
  2433. /* Process NT_GNU_PROPERTY_TYPE_0. */
  2434. static bool parse_elf_properties(int image_fd,
  2435. struct image_info *info,
  2436. const struct elf_phdr *phdr,
  2437. char bprm_buf[BPRM_BUF_SIZE],
  2438. Error **errp)
  2439. {
  2440. union {
  2441. struct elf_note nhdr;
  2442. uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
  2443. } note;
  2444. int n, off, datasz;
  2445. bool have_prev_type;
  2446. uint32_t prev_type;
  2447. /* Unless the arch requires properties, ignore them. */
  2448. if (!ARCH_USE_GNU_PROPERTY) {
  2449. return true;
  2450. }
  2451. /* If the properties are crazy large, that's too bad. */
  2452. n = phdr->p_filesz;
  2453. if (n > sizeof(note)) {
  2454. error_setg(errp, "PT_GNU_PROPERTY too large");
  2455. return false;
  2456. }
  2457. if (n < sizeof(note.nhdr)) {
  2458. error_setg(errp, "PT_GNU_PROPERTY too small");
  2459. return false;
  2460. }
  2461. if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
  2462. memcpy(&note, bprm_buf + phdr->p_offset, n);
  2463. } else {
  2464. ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
  2465. if (len != n) {
  2466. error_setg_errno(errp, errno, "Error reading file header");
  2467. return false;
  2468. }
  2469. }
  2470. /*
  2471. * The contents of a valid PT_GNU_PROPERTY is a sequence
  2472. * of uint32_t -- swap them all now.
  2473. */
  2474. #ifdef BSWAP_NEEDED
  2475. for (int i = 0; i < n / 4; i++) {
  2476. bswap32s(note.data + i);
  2477. }
  2478. #endif
  2479. /*
  2480. * Note that nhdr is 3 words, and that the "name" described by namesz
  2481. * immediately follows nhdr and is thus at the 4th word. Further, all
  2482. * of the inputs to the kernel's round_up are multiples of 4.
  2483. */
  2484. if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
  2485. note.nhdr.n_namesz != NOTE_NAME_SZ ||
  2486. note.data[3] != GNU0_MAGIC) {
  2487. error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
  2488. return false;
  2489. }
  2490. off = sizeof(note.nhdr) + NOTE_NAME_SZ;
  2491. datasz = note.nhdr.n_descsz + off;
  2492. if (datasz > n) {
  2493. error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
  2494. return false;
  2495. }
  2496. have_prev_type = false;
  2497. prev_type = 0;
  2498. while (1) {
  2499. if (off == datasz) {
  2500. return true; /* end, exit ok */
  2501. }
  2502. if (!parse_elf_property(note.data, &off, datasz, info,
  2503. have_prev_type, &prev_type, errp)) {
  2504. return false;
  2505. }
  2506. have_prev_type = true;
  2507. }
  2508. }
  2509. /* Load an ELF image into the address space.
  2510. IMAGE_NAME is the filename of the image, to use in error messages.
  2511. IMAGE_FD is the open file descriptor for the image.
  2512. BPRM_BUF is a copy of the beginning of the file; this of course
  2513. contains the elf file header at offset 0. It is assumed that this
  2514. buffer is sufficiently aligned to present no problems to the host
  2515. in accessing data at aligned offsets within the buffer.
  2516. On return: INFO values will be filled in, as necessary or available. */
  2517. static void load_elf_image(const char *image_name, int image_fd,
  2518. struct image_info *info, char **pinterp_name,
  2519. char bprm_buf[BPRM_BUF_SIZE])
  2520. {
  2521. struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
  2522. struct elf_phdr *phdr;
  2523. abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
  2524. int i, retval, prot_exec;
  2525. Error *err = NULL;
  2526. /* First of all, some simple consistency checks */
  2527. if (!elf_check_ident(ehdr)) {
  2528. error_setg(&err, "Invalid ELF image for this architecture");
  2529. goto exit_errmsg;
  2530. }
  2531. bswap_ehdr(ehdr);
  2532. if (!elf_check_ehdr(ehdr)) {
  2533. error_setg(&err, "Invalid ELF image for this architecture");
  2534. goto exit_errmsg;
  2535. }
  2536. i = ehdr->e_phnum * sizeof(struct elf_phdr);
  2537. if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
  2538. phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
  2539. } else {
  2540. phdr = (struct elf_phdr *) alloca(i);
  2541. retval = pread(image_fd, phdr, i, ehdr->e_phoff);
  2542. if (retval != i) {
  2543. goto exit_read;
  2544. }
  2545. }
  2546. bswap_phdr(phdr, ehdr->e_phnum);
  2547. info->nsegs = 0;
  2548. info->pt_dynamic_addr = 0;
  2549. mmap_lock();
  2550. /*
  2551. * Find the maximum size of the image and allocate an appropriate
  2552. * amount of memory to handle that. Locate the interpreter, if any.
  2553. */
  2554. loaddr = -1, hiaddr = 0;
  2555. info->alignment = 0;
  2556. info->exec_stack = EXSTACK_DEFAULT;
  2557. for (i = 0; i < ehdr->e_phnum; ++i) {
  2558. struct elf_phdr *eppnt = phdr + i;
  2559. if (eppnt->p_type == PT_LOAD) {
  2560. abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
  2561. if (a < loaddr) {
  2562. loaddr = a;
  2563. }
  2564. a = eppnt->p_vaddr + eppnt->p_memsz - 1;
  2565. if (a > hiaddr) {
  2566. hiaddr = a;
  2567. }
  2568. ++info->nsegs;
  2569. info->alignment |= eppnt->p_align;
  2570. } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
  2571. g_autofree char *interp_name = NULL;
  2572. if (*pinterp_name) {
  2573. error_setg(&err, "Multiple PT_INTERP entries");
  2574. goto exit_errmsg;
  2575. }
  2576. interp_name = g_malloc(eppnt->p_filesz);
  2577. if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
  2578. memcpy(interp_name, bprm_buf + eppnt->p_offset,
  2579. eppnt->p_filesz);
  2580. } else {
  2581. retval = pread(image_fd, interp_name, eppnt->p_filesz,
  2582. eppnt->p_offset);
  2583. if (retval != eppnt->p_filesz) {
  2584. goto exit_read;
  2585. }
  2586. }
  2587. if (interp_name[eppnt->p_filesz - 1] != 0) {
  2588. error_setg(&err, "Invalid PT_INTERP entry");
  2589. goto exit_errmsg;
  2590. }
  2591. *pinterp_name = g_steal_pointer(&interp_name);
  2592. } else if (eppnt->p_type == PT_GNU_PROPERTY) {
  2593. if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
  2594. goto exit_errmsg;
  2595. }
  2596. } else if (eppnt->p_type == PT_GNU_STACK) {
  2597. info->exec_stack = eppnt->p_flags & PF_X;
  2598. }
  2599. }
  2600. if (pinterp_name != NULL) {
  2601. /*
  2602. * This is the main executable.
  2603. *
  2604. * Reserve extra space for brk.
  2605. * We hold on to this space while placing the interpreter
  2606. * and the stack, lest they be placed immediately after
  2607. * the data segment and block allocation from the brk.
  2608. *
  2609. * 16MB is chosen as "large enough" without being so large as
  2610. * to allow the result to not fit with a 32-bit guest on a
  2611. * 32-bit host. However some 64 bit guests (e.g. s390x)
  2612. * attempt to place their heap further ahead and currently
  2613. * nothing stops them smashing into QEMUs address space.
  2614. */
  2615. #if TARGET_LONG_BITS == 64
  2616. info->reserve_brk = 32 * MiB;
  2617. #else
  2618. info->reserve_brk = 16 * MiB;
  2619. #endif
  2620. hiaddr += info->reserve_brk;
  2621. if (ehdr->e_type == ET_EXEC) {
  2622. /*
  2623. * Make sure that the low address does not conflict with
  2624. * MMAP_MIN_ADDR or the QEMU application itself.
  2625. */
  2626. probe_guest_base(image_name, loaddr, hiaddr);
  2627. } else {
  2628. /*
  2629. * The binary is dynamic, but we still need to
  2630. * select guest_base. In this case we pass a size.
  2631. */
  2632. probe_guest_base(image_name, 0, hiaddr - loaddr);
  2633. }
  2634. }
  2635. /*
  2636. * Reserve address space for all of this.
  2637. *
  2638. * In the case of ET_EXEC, we supply MAP_FIXED so that we get
  2639. * exactly the address range that is required.
  2640. *
  2641. * Otherwise this is ET_DYN, and we are searching for a location
  2642. * that can hold the memory space required. If the image is
  2643. * pre-linked, LOADDR will be non-zero, and the kernel should
  2644. * honor that address if it happens to be free.
  2645. *
  2646. * In both cases, we will overwrite pages in this range with mappings
  2647. * from the executable.
  2648. */
  2649. load_addr = target_mmap(loaddr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
  2650. MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
  2651. (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
  2652. -1, 0);
  2653. if (load_addr == -1) {
  2654. goto exit_mmap;
  2655. }
  2656. load_bias = load_addr - loaddr;
  2657. if (elf_is_fdpic(ehdr)) {
  2658. struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
  2659. g_malloc(sizeof(*loadsegs) * info->nsegs);
  2660. for (i = 0; i < ehdr->e_phnum; ++i) {
  2661. switch (phdr[i].p_type) {
  2662. case PT_DYNAMIC:
  2663. info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
  2664. break;
  2665. case PT_LOAD:
  2666. loadsegs->addr = phdr[i].p_vaddr + load_bias;
  2667. loadsegs->p_vaddr = phdr[i].p_vaddr;
  2668. loadsegs->p_memsz = phdr[i].p_memsz;
  2669. ++loadsegs;
  2670. break;
  2671. }
  2672. }
  2673. }
  2674. info->load_bias = load_bias;
  2675. info->code_offset = load_bias;
  2676. info->data_offset = load_bias;
  2677. info->load_addr = load_addr;
  2678. info->entry = ehdr->e_entry + load_bias;
  2679. info->start_code = -1;
  2680. info->end_code = 0;
  2681. info->start_data = -1;
  2682. info->end_data = 0;
  2683. info->brk = 0;
  2684. info->elf_flags = ehdr->e_flags;
  2685. prot_exec = PROT_EXEC;
  2686. #ifdef TARGET_AARCH64
  2687. /*
  2688. * If the BTI feature is present, this indicates that the executable
  2689. * pages of the startup binary should be mapped with PROT_BTI, so that
  2690. * branch targets are enforced.
  2691. *
  2692. * The startup binary is either the interpreter or the static executable.
  2693. * The interpreter is responsible for all pages of a dynamic executable.
  2694. *
  2695. * Elf notes are backward compatible to older cpus.
  2696. * Do not enable BTI unless it is supported.
  2697. */
  2698. if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
  2699. && (pinterp_name == NULL || *pinterp_name == 0)
  2700. && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
  2701. prot_exec |= TARGET_PROT_BTI;
  2702. }
  2703. #endif
  2704. for (i = 0; i < ehdr->e_phnum; i++) {
  2705. struct elf_phdr *eppnt = phdr + i;
  2706. if (eppnt->p_type == PT_LOAD) {
  2707. abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
  2708. int elf_prot = 0;
  2709. if (eppnt->p_flags & PF_R) {
  2710. elf_prot |= PROT_READ;
  2711. }
  2712. if (eppnt->p_flags & PF_W) {
  2713. elf_prot |= PROT_WRITE;
  2714. }
  2715. if (eppnt->p_flags & PF_X) {
  2716. elf_prot |= prot_exec;
  2717. }
  2718. vaddr = load_bias + eppnt->p_vaddr;
  2719. vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
  2720. vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
  2721. vaddr_ef = vaddr + eppnt->p_filesz;
  2722. vaddr_em = vaddr + eppnt->p_memsz;
  2723. /*
  2724. * Some segments may be completely empty, with a non-zero p_memsz
  2725. * but no backing file segment.
  2726. */
  2727. if (eppnt->p_filesz != 0) {
  2728. vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
  2729. error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
  2730. MAP_PRIVATE | MAP_FIXED,
  2731. image_fd, eppnt->p_offset - vaddr_po);
  2732. if (error == -1) {
  2733. goto exit_mmap;
  2734. }
  2735. /*
  2736. * If the load segment requests extra zeros (e.g. bss), map it.
  2737. */
  2738. if (eppnt->p_filesz < eppnt->p_memsz) {
  2739. zero_bss(vaddr_ef, vaddr_em, elf_prot);
  2740. }
  2741. } else if (eppnt->p_memsz != 0) {
  2742. vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
  2743. error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
  2744. MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
  2745. -1, 0);
  2746. if (error == -1) {
  2747. goto exit_mmap;
  2748. }
  2749. }
  2750. /* Find the full program boundaries. */
  2751. if (elf_prot & PROT_EXEC) {
  2752. if (vaddr < info->start_code) {
  2753. info->start_code = vaddr;
  2754. }
  2755. if (vaddr_ef > info->end_code) {
  2756. info->end_code = vaddr_ef;
  2757. }
  2758. }
  2759. if (elf_prot & PROT_WRITE) {
  2760. if (vaddr < info->start_data) {
  2761. info->start_data = vaddr;
  2762. }
  2763. if (vaddr_ef > info->end_data) {
  2764. info->end_data = vaddr_ef;
  2765. }
  2766. }
  2767. if (vaddr_em > info->brk) {
  2768. info->brk = vaddr_em;
  2769. }
  2770. #ifdef TARGET_MIPS
  2771. } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
  2772. Mips_elf_abiflags_v0 abiflags;
  2773. if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
  2774. error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
  2775. goto exit_errmsg;
  2776. }
  2777. if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
  2778. memcpy(&abiflags, bprm_buf + eppnt->p_offset,
  2779. sizeof(Mips_elf_abiflags_v0));
  2780. } else {
  2781. retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
  2782. eppnt->p_offset);
  2783. if (retval != sizeof(Mips_elf_abiflags_v0)) {
  2784. goto exit_read;
  2785. }
  2786. }
  2787. bswap_mips_abiflags(&abiflags);
  2788. info->fp_abi = abiflags.fp_abi;
  2789. #endif
  2790. }
  2791. }
  2792. if (info->end_data == 0) {
  2793. info->start_data = info->end_code;
  2794. info->end_data = info->end_code;
  2795. }
  2796. if (qemu_log_enabled()) {
  2797. load_symbols(ehdr, image_fd, load_bias);
  2798. }
  2799. debuginfo_report_elf(image_name, image_fd, load_bias);
  2800. mmap_unlock();
  2801. close(image_fd);
  2802. return;
  2803. exit_read:
  2804. if (retval >= 0) {
  2805. error_setg(&err, "Incomplete read of file header");
  2806. } else {
  2807. error_setg_errno(&err, errno, "Error reading file header");
  2808. }
  2809. goto exit_errmsg;
  2810. exit_mmap:
  2811. error_setg_errno(&err, errno, "Error mapping file");
  2812. goto exit_errmsg;
  2813. exit_errmsg:
  2814. error_reportf_err(err, "%s: ", image_name);
  2815. exit(-1);
  2816. }
  2817. static void load_elf_interp(const char *filename, struct image_info *info,
  2818. char bprm_buf[BPRM_BUF_SIZE])
  2819. {
  2820. int fd, retval;
  2821. Error *err = NULL;
  2822. fd = open(path(filename), O_RDONLY);
  2823. if (fd < 0) {
  2824. error_setg_file_open(&err, errno, filename);
  2825. error_report_err(err);
  2826. exit(-1);
  2827. }
  2828. retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
  2829. if (retval < 0) {
  2830. error_setg_errno(&err, errno, "Error reading file header");
  2831. error_reportf_err(err, "%s: ", filename);
  2832. exit(-1);
  2833. }
  2834. if (retval < BPRM_BUF_SIZE) {
  2835. memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
  2836. }
  2837. load_elf_image(filename, fd, info, NULL, bprm_buf);
  2838. }
  2839. static int symfind(const void *s0, const void *s1)
  2840. {
  2841. target_ulong addr = *(target_ulong *)s0;
  2842. struct elf_sym *sym = (struct elf_sym *)s1;
  2843. int result = 0;
  2844. if (addr < sym->st_value) {
  2845. result = -1;
  2846. } else if (addr >= sym->st_value + sym->st_size) {
  2847. result = 1;
  2848. }
  2849. return result;
  2850. }
  2851. static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
  2852. {
  2853. #if ELF_CLASS == ELFCLASS32
  2854. struct elf_sym *syms = s->disas_symtab.elf32;
  2855. #else
  2856. struct elf_sym *syms = s->disas_symtab.elf64;
  2857. #endif
  2858. // binary search
  2859. struct elf_sym *sym;
  2860. sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
  2861. if (sym != NULL) {
  2862. return s->disas_strtab + sym->st_name;
  2863. }
  2864. return "";
  2865. }
  2866. /* FIXME: This should use elf_ops.h */
  2867. static int symcmp(const void *s0, const void *s1)
  2868. {
  2869. struct elf_sym *sym0 = (struct elf_sym *)s0;
  2870. struct elf_sym *sym1 = (struct elf_sym *)s1;
  2871. return (sym0->st_value < sym1->st_value)
  2872. ? -1
  2873. : ((sym0->st_value > sym1->st_value) ? 1 : 0);
  2874. }
  2875. /* Best attempt to load symbols from this ELF object. */
  2876. static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
  2877. {
  2878. int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
  2879. uint64_t segsz;
  2880. struct elf_shdr *shdr;
  2881. char *strings = NULL;
  2882. struct syminfo *s = NULL;
  2883. struct elf_sym *new_syms, *syms = NULL;
  2884. shnum = hdr->e_shnum;
  2885. i = shnum * sizeof(struct elf_shdr);
  2886. shdr = (struct elf_shdr *)alloca(i);
  2887. if (pread(fd, shdr, i, hdr->e_shoff) != i) {
  2888. return;
  2889. }
  2890. bswap_shdr(shdr, shnum);
  2891. for (i = 0; i < shnum; ++i) {
  2892. if (shdr[i].sh_type == SHT_SYMTAB) {
  2893. sym_idx = i;
  2894. str_idx = shdr[i].sh_link;
  2895. goto found;
  2896. }
  2897. }
  2898. /* There will be no symbol table if the file was stripped. */
  2899. return;
  2900. found:
  2901. /* Now know where the strtab and symtab are. Snarf them. */
  2902. s = g_try_new(struct syminfo, 1);
  2903. if (!s) {
  2904. goto give_up;
  2905. }
  2906. segsz = shdr[str_idx].sh_size;
  2907. s->disas_strtab = strings = g_try_malloc(segsz);
  2908. if (!strings ||
  2909. pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
  2910. goto give_up;
  2911. }
  2912. segsz = shdr[sym_idx].sh_size;
  2913. syms = g_try_malloc(segsz);
  2914. if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
  2915. goto give_up;
  2916. }
  2917. if (segsz / sizeof(struct elf_sym) > INT_MAX) {
  2918. /* Implausibly large symbol table: give up rather than ploughing
  2919. * on with the number of symbols calculation overflowing
  2920. */
  2921. goto give_up;
  2922. }
  2923. nsyms = segsz / sizeof(struct elf_sym);
  2924. for (i = 0; i < nsyms; ) {
  2925. bswap_sym(syms + i);
  2926. /* Throw away entries which we do not need. */
  2927. if (syms[i].st_shndx == SHN_UNDEF
  2928. || syms[i].st_shndx >= SHN_LORESERVE
  2929. || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
  2930. if (i < --nsyms) {
  2931. syms[i] = syms[nsyms];
  2932. }
  2933. } else {
  2934. #if defined(TARGET_ARM) || defined (TARGET_MIPS)
  2935. /* The bottom address bit marks a Thumb or MIPS16 symbol. */
  2936. syms[i].st_value &= ~(target_ulong)1;
  2937. #endif
  2938. syms[i].st_value += load_bias;
  2939. i++;
  2940. }
  2941. }
  2942. /* No "useful" symbol. */
  2943. if (nsyms == 0) {
  2944. goto give_up;
  2945. }
  2946. /* Attempt to free the storage associated with the local symbols
  2947. that we threw away. Whether or not this has any effect on the
  2948. memory allocation depends on the malloc implementation and how
  2949. many symbols we managed to discard. */
  2950. new_syms = g_try_renew(struct elf_sym, syms, nsyms);
  2951. if (new_syms == NULL) {
  2952. goto give_up;
  2953. }
  2954. syms = new_syms;
  2955. qsort(syms, nsyms, sizeof(*syms), symcmp);
  2956. s->disas_num_syms = nsyms;
  2957. #if ELF_CLASS == ELFCLASS32
  2958. s->disas_symtab.elf32 = syms;
  2959. #else
  2960. s->disas_symtab.elf64 = syms;
  2961. #endif
  2962. s->lookup_symbol = lookup_symbolxx;
  2963. s->next = syminfos;
  2964. syminfos = s;
  2965. return;
  2966. give_up:
  2967. g_free(s);
  2968. g_free(strings);
  2969. g_free(syms);
  2970. }
  2971. uint32_t get_elf_eflags(int fd)
  2972. {
  2973. struct elfhdr ehdr;
  2974. off_t offset;
  2975. int ret;
  2976. /* Read ELF header */
  2977. offset = lseek(fd, 0, SEEK_SET);
  2978. if (offset == (off_t) -1) {
  2979. return 0;
  2980. }
  2981. ret = read(fd, &ehdr, sizeof(ehdr));
  2982. if (ret < sizeof(ehdr)) {
  2983. return 0;
  2984. }
  2985. offset = lseek(fd, offset, SEEK_SET);
  2986. if (offset == (off_t) -1) {
  2987. return 0;
  2988. }
  2989. /* Check ELF signature */
  2990. if (!elf_check_ident(&ehdr)) {
  2991. return 0;
  2992. }
  2993. /* check header */
  2994. bswap_ehdr(&ehdr);
  2995. if (!elf_check_ehdr(&ehdr)) {
  2996. return 0;
  2997. }
  2998. /* return architecture id */
  2999. return ehdr.e_flags;
  3000. }
  3001. int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
  3002. {
  3003. struct image_info interp_info;
  3004. struct elfhdr elf_ex;
  3005. char *elf_interpreter = NULL;
  3006. char *scratch;
  3007. memset(&interp_info, 0, sizeof(interp_info));
  3008. #ifdef TARGET_MIPS
  3009. interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
  3010. #endif
  3011. info->start_mmap = (abi_ulong)ELF_START_MMAP;
  3012. load_elf_image(bprm->filename, bprm->fd, info,
  3013. &elf_interpreter, bprm->buf);
  3014. /* ??? We need a copy of the elf header for passing to create_elf_tables.
  3015. If we do nothing, we'll have overwritten this when we re-use bprm->buf
  3016. when we load the interpreter. */
  3017. elf_ex = *(struct elfhdr *)bprm->buf;
  3018. /* Do this so that we can load the interpreter, if need be. We will
  3019. change some of these later */
  3020. bprm->p = setup_arg_pages(bprm, info);
  3021. scratch = g_new0(char, TARGET_PAGE_SIZE);
  3022. if (STACK_GROWS_DOWN) {
  3023. bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
  3024. bprm->p, info->stack_limit);
  3025. info->file_string = bprm->p;
  3026. bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
  3027. bprm->p, info->stack_limit);
  3028. info->env_strings = bprm->p;
  3029. bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
  3030. bprm->p, info->stack_limit);
  3031. info->arg_strings = bprm->p;
  3032. } else {
  3033. info->arg_strings = bprm->p;
  3034. bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
  3035. bprm->p, info->stack_limit);
  3036. info->env_strings = bprm->p;
  3037. bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
  3038. bprm->p, info->stack_limit);
  3039. info->file_string = bprm->p;
  3040. bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
  3041. bprm->p, info->stack_limit);
  3042. }
  3043. g_free(scratch);
  3044. if (!bprm->p) {
  3045. fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
  3046. exit(-1);
  3047. }
  3048. if (elf_interpreter) {
  3049. load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
  3050. /* If the program interpreter is one of these two, then assume
  3051. an iBCS2 image. Otherwise assume a native linux image. */
  3052. if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
  3053. || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
  3054. info->personality = PER_SVR4;
  3055. /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
  3056. and some applications "depend" upon this behavior. Since
  3057. we do not have the power to recompile these, we emulate
  3058. the SVr4 behavior. Sigh. */
  3059. target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
  3060. MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  3061. }
  3062. #ifdef TARGET_MIPS
  3063. info->interp_fp_abi = interp_info.fp_abi;
  3064. #endif
  3065. }
  3066. /*
  3067. * TODO: load a vdso, which would also contain the signal trampolines.
  3068. * Otherwise, allocate a private page to hold them.
  3069. */
  3070. if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
  3071. abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
  3072. PROT_READ | PROT_WRITE,
  3073. MAP_PRIVATE | MAP_ANON, -1, 0);
  3074. if (tramp_page == -1) {
  3075. return -errno;
  3076. }
  3077. setup_sigtramp(tramp_page);
  3078. target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
  3079. }
  3080. bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
  3081. info, (elf_interpreter ? &interp_info : NULL));
  3082. info->start_stack = bprm->p;
  3083. /* If we have an interpreter, set that as the program's entry point.
  3084. Copy the load_bias as well, to help PPC64 interpret the entry
  3085. point as a function descriptor. Do this after creating elf tables
  3086. so that we copy the original program entry point into the AUXV. */
  3087. if (elf_interpreter) {
  3088. info->load_bias = interp_info.load_bias;
  3089. info->entry = interp_info.entry;
  3090. g_free(elf_interpreter);
  3091. }
  3092. #ifdef USE_ELF_CORE_DUMP
  3093. bprm->core_dump = &elf_core_dump;
  3094. #endif
  3095. /*
  3096. * If we reserved extra space for brk, release it now.
  3097. * The implementation of do_brk in syscalls.c expects to be able
  3098. * to mmap pages in this space.
  3099. */
  3100. if (info->reserve_brk) {
  3101. abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
  3102. abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
  3103. target_munmap(start_brk, end_brk - start_brk);
  3104. }
  3105. return 0;
  3106. }
  3107. #ifdef USE_ELF_CORE_DUMP
  3108. /*
  3109. * Definitions to generate Intel SVR4-like core files.
  3110. * These mostly have the same names as the SVR4 types with "target_elf_"
  3111. * tacked on the front to prevent clashes with linux definitions,
  3112. * and the typedef forms have been avoided. This is mostly like
  3113. * the SVR4 structure, but more Linuxy, with things that Linux does
  3114. * not support and which gdb doesn't really use excluded.
  3115. *
  3116. * Fields we don't dump (their contents is zero) in linux-user qemu
  3117. * are marked with XXX.
  3118. *
  3119. * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
  3120. *
  3121. * Porting ELF coredump for target is (quite) simple process. First you
  3122. * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
  3123. * the target resides):
  3124. *
  3125. * #define USE_ELF_CORE_DUMP
  3126. *
  3127. * Next you define type of register set used for dumping. ELF specification
  3128. * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
  3129. *
  3130. * typedef <target_regtype> target_elf_greg_t;
  3131. * #define ELF_NREG <number of registers>
  3132. * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
  3133. *
  3134. * Last step is to implement target specific function that copies registers
  3135. * from given cpu into just specified register set. Prototype is:
  3136. *
  3137. * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
  3138. * const CPUArchState *env);
  3139. *
  3140. * Parameters:
  3141. * regs - copy register values into here (allocated and zeroed by caller)
  3142. * env - copy registers from here
  3143. *
  3144. * Example for ARM target is provided in this file.
  3145. */
  3146. /* An ELF note in memory */
  3147. struct memelfnote {
  3148. const char *name;
  3149. size_t namesz;
  3150. size_t namesz_rounded;
  3151. int type;
  3152. size_t datasz;
  3153. size_t datasz_rounded;
  3154. void *data;
  3155. size_t notesz;
  3156. };
  3157. struct target_elf_siginfo {
  3158. abi_int si_signo; /* signal number */
  3159. abi_int si_code; /* extra code */
  3160. abi_int si_errno; /* errno */
  3161. };
  3162. struct target_elf_prstatus {
  3163. struct target_elf_siginfo pr_info; /* Info associated with signal */
  3164. abi_short pr_cursig; /* Current signal */
  3165. abi_ulong pr_sigpend; /* XXX */
  3166. abi_ulong pr_sighold; /* XXX */
  3167. target_pid_t pr_pid;
  3168. target_pid_t pr_ppid;
  3169. target_pid_t pr_pgrp;
  3170. target_pid_t pr_sid;
  3171. struct target_timeval pr_utime; /* XXX User time */
  3172. struct target_timeval pr_stime; /* XXX System time */
  3173. struct target_timeval pr_cutime; /* XXX Cumulative user time */
  3174. struct target_timeval pr_cstime; /* XXX Cumulative system time */
  3175. target_elf_gregset_t pr_reg; /* GP registers */
  3176. abi_int pr_fpvalid; /* XXX */
  3177. };
  3178. #define ELF_PRARGSZ (80) /* Number of chars for args */
  3179. struct target_elf_prpsinfo {
  3180. char pr_state; /* numeric process state */
  3181. char pr_sname; /* char for pr_state */
  3182. char pr_zomb; /* zombie */
  3183. char pr_nice; /* nice val */
  3184. abi_ulong pr_flag; /* flags */
  3185. target_uid_t pr_uid;
  3186. target_gid_t pr_gid;
  3187. target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
  3188. /* Lots missing */
  3189. char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
  3190. char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
  3191. };
  3192. /* Here is the structure in which status of each thread is captured. */
  3193. struct elf_thread_status {
  3194. QTAILQ_ENTRY(elf_thread_status) ets_link;
  3195. struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
  3196. #if 0
  3197. elf_fpregset_t fpu; /* NT_PRFPREG */
  3198. struct task_struct *thread;
  3199. elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
  3200. #endif
  3201. struct memelfnote notes[1];
  3202. int num_notes;
  3203. };
  3204. struct elf_note_info {
  3205. struct memelfnote *notes;
  3206. struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
  3207. struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
  3208. QTAILQ_HEAD(, elf_thread_status) thread_list;
  3209. #if 0
  3210. /*
  3211. * Current version of ELF coredump doesn't support
  3212. * dumping fp regs etc.
  3213. */
  3214. elf_fpregset_t *fpu;
  3215. elf_fpxregset_t *xfpu;
  3216. int thread_status_size;
  3217. #endif
  3218. int notes_size;
  3219. int numnote;
  3220. };
  3221. struct vm_area_struct {
  3222. target_ulong vma_start; /* start vaddr of memory region */
  3223. target_ulong vma_end; /* end vaddr of memory region */
  3224. abi_ulong vma_flags; /* protection etc. flags for the region */
  3225. QTAILQ_ENTRY(vm_area_struct) vma_link;
  3226. };
  3227. struct mm_struct {
  3228. QTAILQ_HEAD(, vm_area_struct) mm_mmap;
  3229. int mm_count; /* number of mappings */
  3230. };
  3231. static struct mm_struct *vma_init(void);
  3232. static void vma_delete(struct mm_struct *);
  3233. static int vma_add_mapping(struct mm_struct *, target_ulong,
  3234. target_ulong, abi_ulong);
  3235. static int vma_get_mapping_count(const struct mm_struct *);
  3236. static struct vm_area_struct *vma_first(const struct mm_struct *);
  3237. static struct vm_area_struct *vma_next(struct vm_area_struct *);
  3238. static abi_ulong vma_dump_size(const struct vm_area_struct *);
  3239. static int vma_walker(void *priv, target_ulong start, target_ulong end,
  3240. unsigned long flags);
  3241. static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
  3242. static void fill_note(struct memelfnote *, const char *, int,
  3243. unsigned int, void *);
  3244. static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
  3245. static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
  3246. static void fill_auxv_note(struct memelfnote *, const TaskState *);
  3247. static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
  3248. static size_t note_size(const struct memelfnote *);
  3249. static void free_note_info(struct elf_note_info *);
  3250. static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
  3251. static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
  3252. static int dump_write(int, const void *, size_t);
  3253. static int write_note(struct memelfnote *, int);
  3254. static int write_note_info(struct elf_note_info *, int);
  3255. #ifdef BSWAP_NEEDED
  3256. static void bswap_prstatus(struct target_elf_prstatus *prstatus)
  3257. {
  3258. prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
  3259. prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
  3260. prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
  3261. prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
  3262. prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
  3263. prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
  3264. prstatus->pr_pid = tswap32(prstatus->pr_pid);
  3265. prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
  3266. prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
  3267. prstatus->pr_sid = tswap32(prstatus->pr_sid);
  3268. /* cpu times are not filled, so we skip them */
  3269. /* regs should be in correct format already */
  3270. prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
  3271. }
  3272. static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
  3273. {
  3274. psinfo->pr_flag = tswapal(psinfo->pr_flag);
  3275. psinfo->pr_uid = tswap16(psinfo->pr_uid);
  3276. psinfo->pr_gid = tswap16(psinfo->pr_gid);
  3277. psinfo->pr_pid = tswap32(psinfo->pr_pid);
  3278. psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
  3279. psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
  3280. psinfo->pr_sid = tswap32(psinfo->pr_sid);
  3281. }
  3282. static void bswap_note(struct elf_note *en)
  3283. {
  3284. bswap32s(&en->n_namesz);
  3285. bswap32s(&en->n_descsz);
  3286. bswap32s(&en->n_type);
  3287. }
  3288. #else
  3289. static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
  3290. static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
  3291. static inline void bswap_note(struct elf_note *en) { }
  3292. #endif /* BSWAP_NEEDED */
  3293. /*
  3294. * Minimal support for linux memory regions. These are needed
  3295. * when we are finding out what memory exactly belongs to
  3296. * emulated process. No locks needed here, as long as
  3297. * thread that received the signal is stopped.
  3298. */
  3299. static struct mm_struct *vma_init(void)
  3300. {
  3301. struct mm_struct *mm;
  3302. if ((mm = g_malloc(sizeof (*mm))) == NULL)
  3303. return (NULL);
  3304. mm->mm_count = 0;
  3305. QTAILQ_INIT(&mm->mm_mmap);
  3306. return (mm);
  3307. }
  3308. static void vma_delete(struct mm_struct *mm)
  3309. {
  3310. struct vm_area_struct *vma;
  3311. while ((vma = vma_first(mm)) != NULL) {
  3312. QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
  3313. g_free(vma);
  3314. }
  3315. g_free(mm);
  3316. }
  3317. static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
  3318. target_ulong end, abi_ulong flags)
  3319. {
  3320. struct vm_area_struct *vma;
  3321. if ((vma = g_malloc0(sizeof (*vma))) == NULL)
  3322. return (-1);
  3323. vma->vma_start = start;
  3324. vma->vma_end = end;
  3325. vma->vma_flags = flags;
  3326. QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
  3327. mm->mm_count++;
  3328. return (0);
  3329. }
  3330. static struct vm_area_struct *vma_first(const struct mm_struct *mm)
  3331. {
  3332. return (QTAILQ_FIRST(&mm->mm_mmap));
  3333. }
  3334. static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
  3335. {
  3336. return (QTAILQ_NEXT(vma, vma_link));
  3337. }
  3338. static int vma_get_mapping_count(const struct mm_struct *mm)
  3339. {
  3340. return (mm->mm_count);
  3341. }
  3342. /*
  3343. * Calculate file (dump) size of given memory region.
  3344. */
  3345. static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
  3346. {
  3347. /* if we cannot even read the first page, skip it */
  3348. if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
  3349. return (0);
  3350. /*
  3351. * Usually we don't dump executable pages as they contain
  3352. * non-writable code that debugger can read directly from
  3353. * target library etc. However, thread stacks are marked
  3354. * also executable so we read in first page of given region
  3355. * and check whether it contains elf header. If there is
  3356. * no elf header, we dump it.
  3357. */
  3358. if (vma->vma_flags & PROT_EXEC) {
  3359. char page[TARGET_PAGE_SIZE];
  3360. if (copy_from_user(page, vma->vma_start, sizeof (page))) {
  3361. return 0;
  3362. }
  3363. if ((page[EI_MAG0] == ELFMAG0) &&
  3364. (page[EI_MAG1] == ELFMAG1) &&
  3365. (page[EI_MAG2] == ELFMAG2) &&
  3366. (page[EI_MAG3] == ELFMAG3)) {
  3367. /*
  3368. * Mappings are possibly from ELF binary. Don't dump
  3369. * them.
  3370. */
  3371. return (0);
  3372. }
  3373. }
  3374. return (vma->vma_end - vma->vma_start);
  3375. }
  3376. static int vma_walker(void *priv, target_ulong start, target_ulong end,
  3377. unsigned long flags)
  3378. {
  3379. struct mm_struct *mm = (struct mm_struct *)priv;
  3380. vma_add_mapping(mm, start, end, flags);
  3381. return (0);
  3382. }
  3383. static void fill_note(struct memelfnote *note, const char *name, int type,
  3384. unsigned int sz, void *data)
  3385. {
  3386. unsigned int namesz;
  3387. namesz = strlen(name) + 1;
  3388. note->name = name;
  3389. note->namesz = namesz;
  3390. note->namesz_rounded = roundup(namesz, sizeof (int32_t));
  3391. note->type = type;
  3392. note->datasz = sz;
  3393. note->datasz_rounded = roundup(sz, sizeof (int32_t));
  3394. note->data = data;
  3395. /*
  3396. * We calculate rounded up note size here as specified by
  3397. * ELF document.
  3398. */
  3399. note->notesz = sizeof (struct elf_note) +
  3400. note->namesz_rounded + note->datasz_rounded;
  3401. }
  3402. static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
  3403. uint32_t flags)
  3404. {
  3405. (void) memset(elf, 0, sizeof(*elf));
  3406. (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
  3407. elf->e_ident[EI_CLASS] = ELF_CLASS;
  3408. elf->e_ident[EI_DATA] = ELF_DATA;
  3409. elf->e_ident[EI_VERSION] = EV_CURRENT;
  3410. elf->e_ident[EI_OSABI] = ELF_OSABI;
  3411. elf->e_type = ET_CORE;
  3412. elf->e_machine = machine;
  3413. elf->e_version = EV_CURRENT;
  3414. elf->e_phoff = sizeof(struct elfhdr);
  3415. elf->e_flags = flags;
  3416. elf->e_ehsize = sizeof(struct elfhdr);
  3417. elf->e_phentsize = sizeof(struct elf_phdr);
  3418. elf->e_phnum = segs;
  3419. bswap_ehdr(elf);
  3420. }
  3421. static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
  3422. {
  3423. phdr->p_type = PT_NOTE;
  3424. phdr->p_offset = offset;
  3425. phdr->p_vaddr = 0;
  3426. phdr->p_paddr = 0;
  3427. phdr->p_filesz = sz;
  3428. phdr->p_memsz = 0;
  3429. phdr->p_flags = 0;
  3430. phdr->p_align = 0;
  3431. bswap_phdr(phdr, 1);
  3432. }
  3433. static size_t note_size(const struct memelfnote *note)
  3434. {
  3435. return (note->notesz);
  3436. }
  3437. static void fill_prstatus(struct target_elf_prstatus *prstatus,
  3438. const TaskState *ts, int signr)
  3439. {
  3440. (void) memset(prstatus, 0, sizeof (*prstatus));
  3441. prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
  3442. prstatus->pr_pid = ts->ts_tid;
  3443. prstatus->pr_ppid = getppid();
  3444. prstatus->pr_pgrp = getpgrp();
  3445. prstatus->pr_sid = getsid(0);
  3446. bswap_prstatus(prstatus);
  3447. }
  3448. static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
  3449. {
  3450. char *base_filename;
  3451. unsigned int i, len;
  3452. (void) memset(psinfo, 0, sizeof (*psinfo));
  3453. len = ts->info->env_strings - ts->info->arg_strings;
  3454. if (len >= ELF_PRARGSZ)
  3455. len = ELF_PRARGSZ - 1;
  3456. if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
  3457. return -EFAULT;
  3458. }
  3459. for (i = 0; i < len; i++)
  3460. if (psinfo->pr_psargs[i] == 0)
  3461. psinfo->pr_psargs[i] = ' ';
  3462. psinfo->pr_psargs[len] = 0;
  3463. psinfo->pr_pid = getpid();
  3464. psinfo->pr_ppid = getppid();
  3465. psinfo->pr_pgrp = getpgrp();
  3466. psinfo->pr_sid = getsid(0);
  3467. psinfo->pr_uid = getuid();
  3468. psinfo->pr_gid = getgid();
  3469. base_filename = g_path_get_basename(ts->bprm->filename);
  3470. /*
  3471. * Using strncpy here is fine: at max-length,
  3472. * this field is not NUL-terminated.
  3473. */
  3474. (void) strncpy(psinfo->pr_fname, base_filename,
  3475. sizeof(psinfo->pr_fname));
  3476. g_free(base_filename);
  3477. bswap_psinfo(psinfo);
  3478. return (0);
  3479. }
  3480. static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
  3481. {
  3482. elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
  3483. elf_addr_t orig_auxv = auxv;
  3484. void *ptr;
  3485. int len = ts->info->auxv_len;
  3486. /*
  3487. * Auxiliary vector is stored in target process stack. It contains
  3488. * {type, value} pairs that we need to dump into note. This is not
  3489. * strictly necessary but we do it here for sake of completeness.
  3490. */
  3491. /* read in whole auxv vector and copy it to memelfnote */
  3492. ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
  3493. if (ptr != NULL) {
  3494. fill_note(note, "CORE", NT_AUXV, len, ptr);
  3495. unlock_user(ptr, auxv, len);
  3496. }
  3497. }
  3498. /*
  3499. * Constructs name of coredump file. We have following convention
  3500. * for the name:
  3501. * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
  3502. *
  3503. * Returns the filename
  3504. */
  3505. static char *core_dump_filename(const TaskState *ts)
  3506. {
  3507. g_autoptr(GDateTime) now = g_date_time_new_now_local();
  3508. g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
  3509. g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
  3510. return g_strdup_printf("qemu_%s_%s_%d.core",
  3511. base_filename, nowstr, (int)getpid());
  3512. }
  3513. static int dump_write(int fd, const void *ptr, size_t size)
  3514. {
  3515. const char *bufp = (const char *)ptr;
  3516. ssize_t bytes_written, bytes_left;
  3517. struct rlimit dumpsize;
  3518. off_t pos;
  3519. bytes_written = 0;
  3520. getrlimit(RLIMIT_CORE, &dumpsize);
  3521. if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
  3522. if (errno == ESPIPE) { /* not a seekable stream */
  3523. bytes_left = size;
  3524. } else {
  3525. return pos;
  3526. }
  3527. } else {
  3528. if (dumpsize.rlim_cur <= pos) {
  3529. return -1;
  3530. } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
  3531. bytes_left = size;
  3532. } else {
  3533. size_t limit_left=dumpsize.rlim_cur - pos;
  3534. bytes_left = limit_left >= size ? size : limit_left ;
  3535. }
  3536. }
  3537. /*
  3538. * In normal conditions, single write(2) should do but
  3539. * in case of socket etc. this mechanism is more portable.
  3540. */
  3541. do {
  3542. bytes_written = write(fd, bufp, bytes_left);
  3543. if (bytes_written < 0) {
  3544. if (errno == EINTR)
  3545. continue;
  3546. return (-1);
  3547. } else if (bytes_written == 0) { /* eof */
  3548. return (-1);
  3549. }
  3550. bufp += bytes_written;
  3551. bytes_left -= bytes_written;
  3552. } while (bytes_left > 0);
  3553. return (0);
  3554. }
  3555. static int write_note(struct memelfnote *men, int fd)
  3556. {
  3557. struct elf_note en;
  3558. en.n_namesz = men->namesz;
  3559. en.n_type = men->type;
  3560. en.n_descsz = men->datasz;
  3561. bswap_note(&en);
  3562. if (dump_write(fd, &en, sizeof(en)) != 0)
  3563. return (-1);
  3564. if (dump_write(fd, men->name, men->namesz_rounded) != 0)
  3565. return (-1);
  3566. if (dump_write(fd, men->data, men->datasz_rounded) != 0)
  3567. return (-1);
  3568. return (0);
  3569. }
  3570. static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
  3571. {
  3572. CPUState *cpu = env_cpu((CPUArchState *)env);
  3573. TaskState *ts = (TaskState *)cpu->opaque;
  3574. struct elf_thread_status *ets;
  3575. ets = g_malloc0(sizeof (*ets));
  3576. ets->num_notes = 1; /* only prstatus is dumped */
  3577. fill_prstatus(&ets->prstatus, ts, 0);
  3578. elf_core_copy_regs(&ets->prstatus.pr_reg, env);
  3579. fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
  3580. &ets->prstatus);
  3581. QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
  3582. info->notes_size += note_size(&ets->notes[0]);
  3583. }
  3584. static void init_note_info(struct elf_note_info *info)
  3585. {
  3586. /* Initialize the elf_note_info structure so that it is at
  3587. * least safe to call free_note_info() on it. Must be
  3588. * called before calling fill_note_info().
  3589. */
  3590. memset(info, 0, sizeof (*info));
  3591. QTAILQ_INIT(&info->thread_list);
  3592. }
  3593. static int fill_note_info(struct elf_note_info *info,
  3594. long signr, const CPUArchState *env)
  3595. {
  3596. #define NUMNOTES 3
  3597. CPUState *cpu = env_cpu((CPUArchState *)env);
  3598. TaskState *ts = (TaskState *)cpu->opaque;
  3599. int i;
  3600. info->notes = g_new0(struct memelfnote, NUMNOTES);
  3601. if (info->notes == NULL)
  3602. return (-ENOMEM);
  3603. info->prstatus = g_malloc0(sizeof (*info->prstatus));
  3604. if (info->prstatus == NULL)
  3605. return (-ENOMEM);
  3606. info->psinfo = g_malloc0(sizeof (*info->psinfo));
  3607. if (info->prstatus == NULL)
  3608. return (-ENOMEM);
  3609. /*
  3610. * First fill in status (and registers) of current thread
  3611. * including process info & aux vector.
  3612. */
  3613. fill_prstatus(info->prstatus, ts, signr);
  3614. elf_core_copy_regs(&info->prstatus->pr_reg, env);
  3615. fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
  3616. sizeof (*info->prstatus), info->prstatus);
  3617. fill_psinfo(info->psinfo, ts);
  3618. fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
  3619. sizeof (*info->psinfo), info->psinfo);
  3620. fill_auxv_note(&info->notes[2], ts);
  3621. info->numnote = 3;
  3622. info->notes_size = 0;
  3623. for (i = 0; i < info->numnote; i++)
  3624. info->notes_size += note_size(&info->notes[i]);
  3625. /* read and fill status of all threads */
  3626. cpu_list_lock();
  3627. CPU_FOREACH(cpu) {
  3628. if (cpu == thread_cpu) {
  3629. continue;
  3630. }
  3631. fill_thread_info(info, cpu->env_ptr);
  3632. }
  3633. cpu_list_unlock();
  3634. return (0);
  3635. }
  3636. static void free_note_info(struct elf_note_info *info)
  3637. {
  3638. struct elf_thread_status *ets;
  3639. while (!QTAILQ_EMPTY(&info->thread_list)) {
  3640. ets = QTAILQ_FIRST(&info->thread_list);
  3641. QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
  3642. g_free(ets);
  3643. }
  3644. g_free(info->prstatus);
  3645. g_free(info->psinfo);
  3646. g_free(info->notes);
  3647. }
  3648. static int write_note_info(struct elf_note_info *info, int fd)
  3649. {
  3650. struct elf_thread_status *ets;
  3651. int i, error = 0;
  3652. /* write prstatus, psinfo and auxv for current thread */
  3653. for (i = 0; i < info->numnote; i++)
  3654. if ((error = write_note(&info->notes[i], fd)) != 0)
  3655. return (error);
  3656. /* write prstatus for each thread */
  3657. QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
  3658. if ((error = write_note(&ets->notes[0], fd)) != 0)
  3659. return (error);
  3660. }
  3661. return (0);
  3662. }
  3663. /*
  3664. * Write out ELF coredump.
  3665. *
  3666. * See documentation of ELF object file format in:
  3667. * http://www.caldera.com/developers/devspecs/gabi41.pdf
  3668. *
  3669. * Coredump format in linux is following:
  3670. *
  3671. * 0 +----------------------+ \
  3672. * | ELF header | ET_CORE |
  3673. * +----------------------+ |
  3674. * | ELF program headers | |--- headers
  3675. * | - NOTE section | |
  3676. * | - PT_LOAD sections | |
  3677. * +----------------------+ /
  3678. * | NOTEs: |
  3679. * | - NT_PRSTATUS |
  3680. * | - NT_PRSINFO |
  3681. * | - NT_AUXV |
  3682. * +----------------------+ <-- aligned to target page
  3683. * | Process memory dump |
  3684. * : :
  3685. * . .
  3686. * : :
  3687. * | |
  3688. * +----------------------+
  3689. *
  3690. * NT_PRSTATUS -> struct elf_prstatus (per thread)
  3691. * NT_PRSINFO -> struct elf_prpsinfo
  3692. * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
  3693. *
  3694. * Format follows System V format as close as possible. Current
  3695. * version limitations are as follows:
  3696. * - no floating point registers are dumped
  3697. *
  3698. * Function returns 0 in case of success, negative errno otherwise.
  3699. *
  3700. * TODO: make this work also during runtime: it should be
  3701. * possible to force coredump from running process and then
  3702. * continue processing. For example qemu could set up SIGUSR2
  3703. * handler (provided that target process haven't registered
  3704. * handler for that) that does the dump when signal is received.
  3705. */
  3706. static int elf_core_dump(int signr, const CPUArchState *env)
  3707. {
  3708. const CPUState *cpu = env_cpu((CPUArchState *)env);
  3709. const TaskState *ts = (const TaskState *)cpu->opaque;
  3710. struct vm_area_struct *vma = NULL;
  3711. g_autofree char *corefile = NULL;
  3712. struct elf_note_info info;
  3713. struct elfhdr elf;
  3714. struct elf_phdr phdr;
  3715. struct rlimit dumpsize;
  3716. struct mm_struct *mm = NULL;
  3717. off_t offset = 0, data_offset = 0;
  3718. int segs = 0;
  3719. int fd = -1;
  3720. init_note_info(&info);
  3721. errno = 0;
  3722. getrlimit(RLIMIT_CORE, &dumpsize);
  3723. if (dumpsize.rlim_cur == 0)
  3724. return 0;
  3725. corefile = core_dump_filename(ts);
  3726. if ((fd = open(corefile, O_WRONLY | O_CREAT,
  3727. S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
  3728. return (-errno);
  3729. /*
  3730. * Walk through target process memory mappings and
  3731. * set up structure containing this information. After
  3732. * this point vma_xxx functions can be used.
  3733. */
  3734. if ((mm = vma_init()) == NULL)
  3735. goto out;
  3736. walk_memory_regions(mm, vma_walker);
  3737. segs = vma_get_mapping_count(mm);
  3738. /*
  3739. * Construct valid coredump ELF header. We also
  3740. * add one more segment for notes.
  3741. */
  3742. fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
  3743. if (dump_write(fd, &elf, sizeof (elf)) != 0)
  3744. goto out;
  3745. /* fill in the in-memory version of notes */
  3746. if (fill_note_info(&info, signr, env) < 0)
  3747. goto out;
  3748. offset += sizeof (elf); /* elf header */
  3749. offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
  3750. /* write out notes program header */
  3751. fill_elf_note_phdr(&phdr, info.notes_size, offset);
  3752. offset += info.notes_size;
  3753. if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
  3754. goto out;
  3755. /*
  3756. * ELF specification wants data to start at page boundary so
  3757. * we align it here.
  3758. */
  3759. data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
  3760. /*
  3761. * Write program headers for memory regions mapped in
  3762. * the target process.
  3763. */
  3764. for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
  3765. (void) memset(&phdr, 0, sizeof (phdr));
  3766. phdr.p_type = PT_LOAD;
  3767. phdr.p_offset = offset;
  3768. phdr.p_vaddr = vma->vma_start;
  3769. phdr.p_paddr = 0;
  3770. phdr.p_filesz = vma_dump_size(vma);
  3771. offset += phdr.p_filesz;
  3772. phdr.p_memsz = vma->vma_end - vma->vma_start;
  3773. phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
  3774. if (vma->vma_flags & PROT_WRITE)
  3775. phdr.p_flags |= PF_W;
  3776. if (vma->vma_flags & PROT_EXEC)
  3777. phdr.p_flags |= PF_X;
  3778. phdr.p_align = ELF_EXEC_PAGESIZE;
  3779. bswap_phdr(&phdr, 1);
  3780. if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
  3781. goto out;
  3782. }
  3783. }
  3784. /*
  3785. * Next we write notes just after program headers. No
  3786. * alignment needed here.
  3787. */
  3788. if (write_note_info(&info, fd) < 0)
  3789. goto out;
  3790. /* align data to page boundary */
  3791. if (lseek(fd, data_offset, SEEK_SET) != data_offset)
  3792. goto out;
  3793. /*
  3794. * Finally we can dump process memory into corefile as well.
  3795. */
  3796. for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
  3797. abi_ulong addr;
  3798. abi_ulong end;
  3799. end = vma->vma_start + vma_dump_size(vma);
  3800. for (addr = vma->vma_start; addr < end;
  3801. addr += TARGET_PAGE_SIZE) {
  3802. char page[TARGET_PAGE_SIZE];
  3803. int error;
  3804. /*
  3805. * Read in page from target process memory and
  3806. * write it to coredump file.
  3807. */
  3808. error = copy_from_user(page, addr, sizeof (page));
  3809. if (error != 0) {
  3810. (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
  3811. addr);
  3812. errno = -error;
  3813. goto out;
  3814. }
  3815. if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
  3816. goto out;
  3817. }
  3818. }
  3819. out:
  3820. free_note_info(&info);
  3821. if (mm != NULL)
  3822. vma_delete(mm);
  3823. (void) close(fd);
  3824. if (errno != 0)
  3825. return (-errno);
  3826. return (0);
  3827. }
  3828. #endif /* USE_ELF_CORE_DUMP */
  3829. void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
  3830. {
  3831. init_thread(regs, infop);
  3832. }